IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.07052.html
   My bibliography  Save this paper

Sequential Estimation of Multivariate Factor Stochastic Volatility Models

Author

Listed:
  • Giorgio Calzolari
  • Roxana Halbleib
  • Christian Mucher

Abstract

We provide a simple method to estimate the parameters of multivariate stochastic volatility models with latent factor structures. These models are very useful as they alleviate the standard curse of dimensionality, allowing the number of parameters to increase only linearly with the number of the return series. Although theoretically very appealing, these models have only found limited practical application due to huge computational burdens. Our estimation method is simple in implementation as it consists of two steps: first, we estimate the loadings and the unconditional variances by maximum likelihood, and then we use the efficient method of moments to estimate the parameters of the stochastic volatility structure with GARCH as an auxiliary model. In a comprehensive Monte Carlo study we show the good performance of our method to estimate the parameters of interest accurately. The simulation study and an application to real vectors of daily returns of dimensions up to 148 show the method's computation advantage over the existing estimation procedures.

Suggested Citation

  • Giorgio Calzolari & Roxana Halbleib & Christian Mucher, 2023. "Sequential Estimation of Multivariate Factor Stochastic Volatility Models," Papers 2302.07052, arXiv.org.
  • Handle: RePEc:arx:papers:2302.07052
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.07052
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    2. Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2018. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Working Paper Series of the Department of Economics, University of Konstanz 2018-07, Department of Economics, University of Konstanz.
    3. Benjamin Williams, 2020. "Identification of the linear factor model," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 92-109, January.
    4. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    5. Jacob Bien & Robert J. Tibshirani, 2011. "Sparse estimation of a covariance matrix," Biometrika, Biometrika Trust, vol. 98(4), pages 807-820.
    6. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    7. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    8. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    9. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    10. Giorgio Calzolari & Roxana Halbleib & Aygul Zagidullina, 2021. "A Latent Factor Model for Forecasting Realized Variances [Stock Returns and Volatility: Pricing the Short-Run and Long-Run Components of Market Risk]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 860-909.
    11. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    12. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    13. Sentana, Enrique & Calzolari, Giorgio & Fiorentini, Gabriele, 2008. "Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks," Journal of Econometrics, Elsevier, vol. 146(1), pages 10-25, September.
    14. Chiara Monfardini, 1998. "Estimating stochastic volatility models through indirect inference," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 113-128.
    15. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    16. Nardari, Federico & Scruggs, John T., 2007. "Bayesian Analysis of Linear Factor Models with Latent Factors, Multivariate Stochastic Volatility, and APT Pricing Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(4), pages 857-891, December.
    17. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    18. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    2. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    3. Sentana, Enrique & Calzolari, Giorgio & Fiorentini, Gabriele, 2008. "Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks," Journal of Econometrics, Elsevier, vol. 146(1), pages 10-25, September.
    4. Maddalena Cavicchioli, 2017. "Estimation and asymptotic covariance matrix for stochastic volatility models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 437-452, August.
    5. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    6. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    7. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    8. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    9. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    10. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    11. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    12. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    13. Anthony N. Rezitis & Gregor Kastner, 2021. "On the joint volatility dynamics in international dairy commodity markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(3), pages 704-728, July.
    14. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    15. Gunawan, David & Kohn, Robert & Nott, David, 2021. "Variational Bayes approximation of factor stochastic volatility models," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1355-1375.
    16. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    17. G. Dhaene, 2004. "Indirect Inference for Stochastic Volatility Models via the Log-Squared Observations," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(3), pages 421-440.
    18. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    19. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    20. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.07052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.