IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.00496.html
   My bibliography  Save this paper

Can maker-taker fees prevent algorithmic cooperation in market making?

Author

Listed:
  • Bingyan Han

Abstract

In a semi-realistic market simulator, independent reinforcement learning algorithms may facilitate market makers to maintain wide spreads even without communication. This unexpected outcome challenges the current antitrust law framework. We study the effectiveness of maker-taker fee models in preventing cooperation via algorithms. After modeling market making as a repeated general-sum game, we experimentally show that the relation between net transaction costs and maker rebates is not necessarily monotone. Besides an upper bound on taker fees, we may also need a lower bound on maker rebates to destabilize the cooperation. We also consider the taker-maker model and the effects of mid-price volatility, inventory risk, and the number of agents.

Suggested Citation

  • Bingyan Han, 2022. "Can maker-taker fees prevent algorithmic cooperation in market making?," Papers 2211.00496, arXiv.org.
  • Handle: RePEc:arx:papers:2211.00496
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.00496
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christie, William G & Schultz, Paul H, 1994. "Why Do NASDAQ Market Makers Avoid Odd-Eighth Quotes?," Journal of Finance, American Finance Association, vol. 49(5), pages 1813-1840, December.
    2. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    3. Omar El Euch & Thibaut Mastrolia & Mathieu Rosenbaum & Nizar Touzi, 2021. "Optimal make–take fees for market making regulation," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 109-148, January.
    4. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    5. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    6. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    7. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    8. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    9. Bastien Baldacci & Dylan Possamai & Mathieu Rosenbaum, 2019. "Optimal make take fees in a multi market maker environment," Papers 1907.11053, arXiv.org, revised Mar 2021.
    10. Karsten T. Hansen & Kanishka Misra & Mallesh M. Pai, 2021. "Frontiers: Algorithmic Collusion: Supra-competitive Prices via," Marketing Science, INFORMS, vol. 40(1), pages 1-12, January.
    11. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    12. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    13. Xinqin Liao & Weitao Song & Xiangyu Zhang & Chaoqun Yan & Tianliang Li & Hongliang Ren & Cunzhi Liu & Yongtian Wang & Yuanjin Zheng, 2020. "A bioinspired analogous nerve towards artificial intelligence," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    14. William G. Christie & Paul H. Schultz, 1995. "Policy Watch: Did Nasdaq Market Makers Implicitly Collude?," Journal of Economic Perspectives, American Economic Association, vol. 9(3), pages 199-208, Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingyan Han, 2022. "Cooperation between Independent Market Makers," Papers 2206.05410, arXiv.org.
    2. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    3. Bruno Gav{s}perov & Zvonko Kostanjv{c}ar, 2022. "Deep Reinforcement Learning for Market Making Under a Hawkes Process-Based Limit Order Book Model," Papers 2207.09951, arXiv.org.
    4. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    5. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    6. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    7. Bastien Baldacci & Philippe Bergault & Dylan Possamai, 2022. "A mean-field game of market-making against strategic traders," Papers 2203.13053, arXiv.org.
    8. Leo Ardon & Nelson Vadori & Thomas Spooner & Mengda Xu & Jared Vann & Sumitra Ganesh, 2021. "Towards a fully RL-based Market Simulator," Papers 2110.06829, arXiv.org, revised Nov 2021.
    9. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2019. "Algorithmic Pricing What Implications for Competition Policy?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 55(1), pages 155-171, August.
    10. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    11. Bingyan Han, 2021. "Understanding algorithmic collusion with experience replay," Papers 2102.09139, arXiv.org, revised Mar 2021.
    12. Johnson, Justin Pappas & Rhodes, Andrew & Wildenbeest, Matthijs, 2020. "Platform Design when Sellers Use Pricing Algorithms," TSE Working Papers 20-1146, Toulouse School of Economics (TSE).
    13. Ali Raheman & Anton Kolonin & Alexey Glushchenko & Arseniy Fokin & Ikram Ansari, 2022. "Adaptive Multi-Strategy Market-Making Agent For Volatile Markets," Papers 2204.13265, arXiv.org.
    14. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
    15. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    16. Arthur Charpentier & Romuald Elie & Carl Remlinger, 2020. "Reinforcement Learning in Economics and Finance," Papers 2003.10014, arXiv.org.
    17. Wuming Fu & Qian Qi, 2023. "Artificial Intelligence and Dual Contract," Papers 2303.12350, arXiv.org.
    18. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    19. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    20. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.00496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.