IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.09325.html
   My bibliography  Save this paper

Deep Learning for Choice Modeling

Author

Listed:
  • Zhongze Cai
  • Hanzhao Wang
  • Kalyan Talluri
  • Xiaocheng Li

Abstract

Choice modeling has been a central topic in the study of individual preference or utility across many fields including economics, marketing, operations research, and psychology. While the vast majority of the literature on choice models has been devoted to the analytical properties that lead to managerial and policy-making insights, the existing methods to learn a choice model from empirical data are often either computationally intractable or sample inefficient. In this paper, we develop deep learning-based choice models under two settings of choice modeling: (i) feature-free and (ii) feature-based. Our model captures both the intrinsic utility for each candidate choice and the effect that the assortment has on the choice probability. Synthetic and real data experiments demonstrate the performances of proposed models in terms of the recovery of the existing choice models, sample complexity, assortment effect, architecture design, and model interpretation.

Suggested Citation

  • Zhongze Cai & Hanzhao Wang & Kalyan Talluri & Xiaocheng Li, 2022. "Deep Learning for Choice Modeling," Papers 2208.09325, arXiv.org.
  • Handle: RePEc:arx:papers:2208.09325
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.09325
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tudor Bodea & Mark Ferguson & Laurie Garrow, 2009. "Data Set--Choice-Based Revenue Management: Data from a Major Hotel Chain," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 356-361, December.
    2. Melvin Wong & Bilal Farooq, 2019. "ResLogit: A residual neural network logit model for data-driven choice modelling," Papers 1912.10058, arXiv.org, revised Feb 2021.
    3. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    4. Vivek F. Farias & Srikanth Jagabathula & Devavrat Shah, 2013. "A Nonparametric Approach to Modeling Choice with Limited Data," Management Science, INFORMS, vol. 59(2), pages 305-322, December.
    5. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    6. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    7. Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
    8. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    2. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    3. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    4. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    5. Gerardo Berbeglia & Alvaro Flores & Guillermo Gallego, 2021. "The Refined Assortment Optimization Problem," Papers 2102.03043, arXiv.org.
    6. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    7. Ruxian Wang & Zizhuo Wang, 2017. "Consumer Choice Models with Endogenous Network Effects," Management Science, INFORMS, vol. 63(11), pages 3944-3960, November.
    8. Sanjay Dominik Jena & Andrea Lodi & Claudio Sole, 2021. "On the estimation of discrete choice models to capture irrational customer behaviors," Papers 2109.03882, arXiv.org.
    9. Aydın Alptekinoğlu & John H. Semple, 2021. "Heteroscedastic Exponomial Choice," Operations Research, INFORMS, vol. 69(3), pages 841-858, May.
    10. Shipra Agrawal & Vashist Avadhanula & Vineet Goyal & Assaf Zeevi, 2019. "MNL-Bandit: A Dynamic Learning Approach to Assortment Selection," Operations Research, INFORMS, vol. 67(5), pages 1453-1485, September.
    11. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
    12. Ali Aouad & Vivek Farias & Retsef Levi, 2021. "Assortment Optimization Under Consider-Then-Choose Choice Models," Management Science, INFORMS, vol. 67(6), pages 3368-3386, June.
    13. Kumar Goutam & Vineet Goyal & Agathe Soret, 2019. "A Generalized Markov Chain Model to Capture Dynamic Preferences and Choice Overload," Papers 1911.06716, arXiv.org, revised Dec 2020.
    14. Shivaram Subramanian & Pavithra Harsha, 2021. "Demand Modeling in the Presence of Unobserved Lost Sales," Management Science, INFORMS, vol. 67(6), pages 3803-3833, June.
    15. Garrett van Ryzin & Gustavo Vulcano, 2015. "A Market Discovery Algorithm to Estimate a General Class of Nonparametric Choice Models," Management Science, INFORMS, vol. 61(2), pages 281-300, February.
    16. Yanqiu Ruan & Xiaobo Li & Karthyek Murthy & Karthik Natarajan, 2022. "A Nonparametric Approach with Marginals for Modeling Consumer Choice," Papers 2208.06115, arXiv.org, revised Jul 2023.
    17. Ali Aouad & Daniela Saban, 2023. "Online Assortment Optimization for Two-Sided Matching Platforms," Management Science, INFORMS, vol. 69(4), pages 2069-2087, April.
    18. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    19. Jeffrey P. Newman & Mark E. Ferguson & Laurie A. Garrow & Timothy L. Jacobs, 2014. "Estimation of Choice-Based Models Using Sales Data from a Single Firm," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 184-197, May.
    20. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.09325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.