IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.06115.html
   My bibliography  Save this paper

A Nonparametric Approach with Marginals for Modeling Consumer Choice

Author

Listed:
  • Yanqiu Ruan
  • Xiaobo Li
  • Karthyek Murthy
  • Karthik Natarajan

Abstract

Given data on the choices made by consumers for different offer sets, a key challenge is to develop parsimonious models that describe and predict consumer choice behavior while being amenable to prescriptive tasks such as pricing and assortment optimization. The marginal distribution model (MDM) is one such model, that requires only the specification of marginal distributions of the random utilities. This paper aims to establish necessary and sufficient conditions for given choice data to be consistent with the MDM hypothesis, inspired by the utility of similar characterizations for the random utility model (RUM). This endeavor leads to an exact characterization of the set of choice probabilities that the MDM can represent. Verifying the consistency of choice data with this characterization is equivalent to solving a polynomial-sized linear program. Since the analogous verification task for RUM is computationally intractable and neither of these models subsumes the other, MDM is helpful in striking a balance between tractability and representational power. The characterization is convenient to be used with robust optimization for making data-driven sales and revenue predictions for new unseen assortments. When the choice data lacks consistency with the MDM hypothesis, finding the best-fitting MDM choice probabilities reduces to solving a mixed integer convex program. The results extend naturally to the case where the alternatives can be grouped based on the similarity of the marginal distributions of the utilities. Numerical experiments show that MDM provides better representational power and prediction accuracy than multinominal logit and significantly better computational performance than RUM.

Suggested Citation

  • Yanqiu Ruan & Xiaobo Li & Karthyek Murthy & Karthik Natarajan, 2022. "A Nonparametric Approach with Marginals for Modeling Consumer Choice," Papers 2208.06115, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2208.06115
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.06115
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    2. Drew Fudenberg & Ryota Iijima & Tomasz Strzalecki, 2015. "Stochastic Choice and Revealed Perturbed Utility," Econometrica, Econometric Society, vol. 83, pages 2371-2409, November.
    3. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    4. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages 13-29, July.
    5. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    6. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    7. Vinit Kumar Mishra & Karthik Natarajan & Dhanesh Padmanabhan & Chung-Piaw Teo & Xiaobo Li, 2014. "On Theoretical and Empirical Aspects of Marginal Distribution Choice Models," Management Science, INFORMS, vol. 60(6), pages 1511-1531, June.
    8. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    9. Damla Ahipaşaoğlu, Selin & Arıkan, Uğur & Natarajan, Karthik, 2016. "On the flexibility of using marginal distribution choice models in traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 130-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    2. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    3. Ruxian Wang & Zizhuo Wang, 2017. "Consumer Choice Models with Endogenous Network Effects," Management Science, INFORMS, vol. 63(11), pages 3944-3960, November.
    4. Guiyun Feng & Xiaobo Li & Zizhuo Wang, 2017. "Technical Note—On the Relation Between Several Discrete Choice Models," Operations Research, INFORMS, vol. 65(6), pages 1516-1525, December.
    5. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    6. Gerardo Berbeglia & Alvaro Flores & Guillermo Gallego, 2021. "The Refined Assortment Optimization Problem," Papers 2102.03043, arXiv.org.
    7. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    8. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    9. Aydın Alptekinoğlu & John H. Semple, 2021. "Heteroscedastic Exponomial Choice," Operations Research, INFORMS, vol. 69(3), pages 841-858, May.
    10. Wei Qi & Xinggang Luo & Xuwang Liu & Yang Yu & Zhongliang Zhang, 2019. "Product Line Pricing under Marginal Moment Model with Network Effect," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    11. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    12. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    13. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    14. Yalç{i}n Akçay & Harihara Prasad Natarajan & Susan H. Xu, 2010. "Joint Dynamic Pricing of Multiple Perishable Products Under Consumer Choice," Management Science, INFORMS, vol. 56(8), pages 1345-1361, August.
    15. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    16. Nathan Kallus & Madeleine Udell, 2020. "Dynamic Assortment Personalization in High Dimensions," Operations Research, INFORMS, vol. 68(4), pages 1020-1037, July.
    17. Xiao-Yue Gong & Vineet Goyal & Garud N. Iyengar & David Simchi-Levi & Rajan Udwani & Shuangyu Wang, 2022. "Online Assortment Optimization with Reusable Resources," Management Science, INFORMS, vol. 68(7), pages 4772-4785, July.
    18. Zhongze Cai & Hanzhao Wang & Kalyan Talluri & Xiaocheng Li, 2022. "Deep Learning for Choice Modeling," Papers 2208.09325, arXiv.org.
    19. Hongmin Li & Scott Webster & Gwangjae Yu, 2020. "Product Design Under Multinomial Logit Choices: Optimization of Quality and Prices in an Evolving Product Line," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1011-1025, September.
    20. Hongmin Li & Scott Webster & Nicholas Mason & Karl Kempf, 2019. "Product-Line Pricing Under Discrete Mixed Multinomial Logit Demand," Service Science, INFORMS, vol. 21(1), pages 14-28, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.06115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.