IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.07345.html
   My bibliography  Save this paper

Joint Location and Cost Planning in Maximum Capture Facility Location under Multiplicative Random Utility Maximization

Author

Listed:
  • Ngan Ha Duong
  • Tien Thanh Dam
  • Thuy Anh Ta
  • Tien Mai

Abstract

We study a joint facility location and cost planning problem in a competitive market under random utility maximization (RUM) models. The objective is to locate new facilities and make decisions on the costs (or budgets) to spend on the new facilities, aiming to maximize an expected captured customer demand, assuming that customers choose a facility among all available facilities according to a RUM model. We examine two RUM frameworks in the discrete choice literature, namely, the additive and multiplicative RUM. While the former has been widely used in facility location problems, we are the first to explore the latter in the context. We numerically show that the two RUM frameworks can well approximate each other in the context of the cost optimization problem. In addition, we show that, under the additive RUM framework, the resultant cost optimization problem becomes highly non-convex and may have several local optima. In contrast, the use of the multiplicative RUM brings several advantages to the competitive facility location problem. For instance, the cost optimization problem under the multiplicative RUM can be solved efficiently by a general convex optimization solver or can be reformulated as a conic quadratic program and handled by a conic solver available in some off-the-shelf solvers such as CPLEX or GUROBI. Furthermore, we consider a joint location and cost optimization problem under the multiplicative RUM and propose three approaches to solve the problem, namely, an equivalent conic reformulation, a multi-cut outer-approximation algorithm, and a local search heuristic. We provide numerical experiments based on synthetic instances of various sizes to evaluate the performances of the proposed algorithms in solving the cost optimization, and the joint location and cost optimization problems.

Suggested Citation

  • Ngan Ha Duong & Tien Thanh Dam & Thuy Anh Ta & Tien Mai, 2022. "Joint Location and Cost Planning in Maximum Capture Facility Location under Multiplicative Random Utility Maximization," Papers 2205.07345, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2205.07345
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.07345
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fosgerau, Mogens, 2006. "Investigating the distribution of the value of travel time savings," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 688-707, September.
    2. Mai, Tien & Lodi, Andrea, 2020. "A multicut outer-approximation approach for competitive facility location under random utilities," European Journal of Operational Research, Elsevier, vol. 284(3), pages 874-881.
    3. Shaheen, Susan & Sperling, Daniel & Wagner, Conrad, 1998. "Carsharing in Europe and North American: Past, Present, and Future," University of California Transportation Center, Working Papers qt4gx4m05b, University of California Transportation Center.
    4. Rui Chen & Hai Jiang, 2020. "Capacitated assortment and price optimization under the nested logit model," Journal of Global Optimization, Springer, vol. 77(4), pages 895-918, August.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    6. Ljubić, Ivana & Moreno, Eduardo, 2018. "Outer approximation and submodular cuts for maximum capture facility location problems with random utilities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 46-56.
    7. Hassan Hijazi & Pierre Bonami & Adam Ouorou, 2014. "An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 31-44, February.
    8. Paat Rusmevichientong & David Shmoys & Chaoxu Tong & Huseyin Topaloglu, 2014. "Assortment Optimization under the Multinomial Logit Model with Random Choice Parameters," Production and Operations Management, Production and Operations Management Society, vol. 23(11), pages 2023-2039, November.
    9. Daly, Andrew & Bierlaire, Michel, 2006. "A general and operational representation of Generalised Extreme Value models," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 285-305, May.
    10. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    11. Haase, Knut & Müller, Sven, 2014. "A comparison of linear reformulations for multinomial logit choice probabilities in facility location models," European Journal of Operational Research, Elsevier, vol. 232(3), pages 689-691.
    12. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    13. Börjesson, Maria & Eliasson, Jonas, 2014. "Experiences from the Swedish Value of Time study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 144-158.
    14. Brilon, Werner & Dette, Holger, 2002. "A multiplicative concept for random utility," Technical Reports 2002,32, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Börjesson, Maria & Eliasson, Jonas & Franklin, Joel, 2012. "Valuations of travel time variability in scheduling versus mean-variance models," Working papers in Transport Economics 2012:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    16. Shaheen, Susan & Sperling, Daniel & Wagner, Conrad, 1998. "Carsharing in Europe and North American: Past, Present, and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4gx4m05b, Institute of Transportation Studies, UC Berkeley.
    17. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    18. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    19. Stephane Hess & Andrew Daly & Richard Batley, 2018. "Revisiting consistency with random utility maximisation: theory and implications for practical work," Theory and Decision, Springer, vol. 84(2), pages 181-204, March.
    20. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    2. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    3. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    4. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    5. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Deriving transport appraisal values from emerging revealed preference data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 225-245.
    6. Shaoning Han & Andrés Gómez & Oleg A. Prokopyev, 2022. "Fractional 0–1 programming and submodularity," Journal of Global Optimization, Springer, vol. 84(1), pages 77-93, September.
    7. Sander Cranenburgh & Marco Kouwenhoven, 2021. "An artificial neural network based method to uncover the value-of-travel-time distribution," Transportation, Springer, vol. 48(5), pages 2545-2583, October.
    8. C. I. Chiang, 2023. "Availability control under online reviews in hospitality," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(5), pages 385-398, October.
    9. Ralf Krohn & Sven Müller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 59-87, March.
    10. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    11. Mai, Tien & Lodi, Andrea, 2020. "A multicut outer-approximation approach for competitive facility location under random utilities," European Journal of Operational Research, Elsevier, vol. 284(3), pages 874-881.
    12. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
    13. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    14. Guillermo Gallego & Haengju Lee, 2020. "Callable products with dependent demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(3), pages 185-200, April.
    15. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    16. Ruxian Wang & Zizhuo Wang, 2017. "Consumer Choice Models with Endogenous Network Effects," Management Science, INFORMS, vol. 63(11), pages 3944-3960, November.
    17. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    18. Mika Sumida & Guillermo Gallego & Paat Rusmevichientong & Huseyin Topaloglu & James Davis, 2021. "Revenue-Utility Tradeoff in Assortment Optimization Under the Multinomial Logit Model with Totally Unimodular Constraints," Management Science, INFORMS, vol. 67(5), pages 2845-2869, May.
    19. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin & Eiselt, H.A., 2023. "Store location with multipurpose shopping trips and a new random utility customers’ choice model," European Journal of Operational Research, Elsevier, vol. 305(2), pages 708-721.
    20. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.07345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.