IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.02418.html
   My bibliography  Save this paper

Explicit no arbitrage domain for sub-SVIs via reparametrization

Author

Listed:
  • Claude Martini
  • Arianna Mingone

Abstract

The no Butterfly arbitrage domain of Gatheral SVI 5-parameters formula for the volatility smile has been recently described. It requires in general a numerical minimization of 2 functions altogether with a few root finding procedures. We study here the case of some sub-SVIs (all with 3 parameters): the Symmetric SVI, the Vanishing Upward/Downward SVI, and SSVI, for which we provide an explicit domain, with no numerical procedure required.

Suggested Citation

  • Claude Martini & Arianna Mingone, 2021. "Explicit no arbitrage domain for sub-SVIs via reparametrization," Papers 2106.02418, arXiv.org.
  • Handle: RePEc:arx:papers:2106.02418
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.02418
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael R. Tehranchi, 2020. "A Black–Scholes inequality: applications and generalisations," Finance and Stochastics, Springer, vol. 24(1), pages 1-38, January.
    2. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    3. Gaoyue Guo & Antoine Jacquier & Claude Martini & Leo Neufcourt, 2012. "Generalised arbitrage-free SVI volatility surfaces," Papers 1210.7111, arXiv.org, revised May 2016.
    4. Jim Gatheral & Antoine Jacquier, 2011. "Convergence of Heston to SVI," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1129-1132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arianna Mingone, 2022. "No arbitrage global parametrization for the eSSVI volatility surface," Papers 2204.00312, arXiv.org.
    2. Claude Martini & Arianna Mingone, 2023. "Options are also options on options: how to smile with Black-Scholes," Papers 2308.04130, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi El Amrani & Antoine Jacquier & Claude Martini, 2019. "Dynamics of symmetric SSVI smiles and implied volatility bubbles," Papers 1909.10272, arXiv.org, revised Feb 2021.
    2. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
    3. Claude Martini & Arianna Mingone, 2020. "No arbitrage SVI," Papers 2005.03340, arXiv.org, revised May 2021.
    4. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    5. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Papers 2207.02989, arXiv.org.
    6. Arianna Mingone, 2022. "Smiles in delta," Papers 2209.00406, arXiv.org.
    7. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Working Papers hal-03715921, HAL.
    8. Chun Yat Yeung & Ali Hirsa, 2022. "Saddle-Point Approach to Large-Time Volatility Smile," Papers 2212.05671, arXiv.org.
    9. Hadrien De March & Pierre Henry-Labordere, 2019. "Building arbitrage-free implied volatility: Sinkhorn's algorithm and variants," Papers 1902.04456, arXiv.org, revised Jul 2023.
    10. Shuzhen Yang & Wenqing Zhang, 2023. "Fixed-point iterative algorithm for SVI model," Papers 2301.07830, arXiv.org.
    11. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    12. Andrew Na & Meixin Zhang & Justin Wan, 2023. "Computing Volatility Surfaces using Generative Adversarial Networks with Minimal Arbitrage Violations," Papers 2304.13128, arXiv.org, revised Dec 2023.
    13. Amine Assouel & Antoine Jacquier & Alexei Kondratyev, 2021. "A Quantum Generative Adversarial Network for distributions," Papers 2110.02742, arXiv.org.
    14. Itkin, Andrey, 2015. "To sigmoid-based functional description of the volatility smile," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 264-291.
    15. Arianna Mingone, 2022. "No arbitrage global parametrization for the eSSVI volatility surface," Papers 2204.00312, arXiv.org.
    16. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2023. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Post-Print hal-03715921, HAL.
    17. Sergey Badikov & Mark H.A. Davis & Antoine Jacquier, 2021. "Perturbation analysis of sub/super hedging problems," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1240-1274, October.
    18. Hadrien de March & Pierre Henry-Labordere, 2019. "Building Arbitrage-Free Implied Volatility: Sinkhorn'S Algorithm And Variants," Working Papers hal-02011533, HAL.
    19. Stefano De Marco, 2020. "On the harmonic mean representation of the implied volatility," Papers 2007.03585, arXiv.org.
    20. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.02418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.