IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.08686.html
   My bibliography  Save this paper

A Black-Scholes user's guide to the Bachelier model

Author

Listed:
  • Jaehyuk Choi
  • Minsuk Kwak
  • Chyng Wen Tee
  • Yumeng Wang

Abstract

To cope with the negative oil futures price caused by the COVID-19 recession, global commodity futures exchanges temporarily switched the option model from Black--Scholes to Bachelier in 2020. This study reviews the literature on Bachelier's pioneering option pricing model and summarizes the practical results on volatility conversion, risk management, stochastic volatility, and barrier options pricing to facilitate the model transition. In particular, using the displaced Black-Scholes model as a model family with the Black-Scholes and Bachelier models as special cases, we not only connect the two models but also present a continuous spectrum of model choices.

Suggested Citation

  • Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2021. "A Black-Scholes user's guide to the Bachelier model," Papers 2104.08686, arXiv.org, revised Feb 2022.
  • Handle: RePEc:arx:papers:2104.08686
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.08686
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    2. Yasaman Karami & Kenichiro Shiraya, 2018. "An approximation formula for normal implied volatility under general local stochastic volatility models," CARF F-Series CARF-F-427, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Archil Gulisashvili & Blanka Horvath & Antoine Jacquier, 2018. "Mass at zero in the uncorrelated SABR model and implied volatility asymptotics," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1753-1765, October.
    4. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    5. Jaehyuk Choi & Kwangmoon Kim & Minsuk Kwak, 2009. "Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 261-268.
    6. Nian Yang & Xiangwei Wan, 2018. "The survival probability of the SABR model: asymptotics and application," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1767-1779, October.
    7. Robert Brooks & Joshua A. Brooks, 2017. "An Option Valuation Framework Based On Arithmetic Brownian Motion: Justification And Implementation Issues," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(3), pages 401-427, September.
    8. Jaehyuk Choi & Lixin Wu, 2021. "A note on the option price and ‘Mass at zero in the uncorrelated SABR model and implied volatility asymptotics’," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1083-1086, July.
    9. Mark Joshi & Riccardo Rebonato, 2003. "A displaced-diffusion stochastic volatility LIBOR market model: motivation, definition and implementation," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 458-469.
    10. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    11. Jean‐Michel Courtault & Yuri Kabanov & Bernard Bru & Pierre Crépel & Isabelle Lebon & Arnaud Le Marchand, 2000. "Louis Bachelier on the Centenary of Théorie de la Spéculation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 339-353, July.
    12. Simona Svoboda-Greenwood, 2009. "Displaced Diffusion as an Approximation of the Constant Elasticity of Variance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 269-286.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Rubinstein, Mark, 1983. "Displaced Diffusion Option Pricing," Journal of Finance, American Finance Association, vol. 38(1), pages 213-217, March.
    15. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    16. Kohta Takehara & Akihiko Takahashi & Masashi Toda, 2010. "New Unified Computational Algorithm in a High-Order Asymptotic Expansion Scheme," World Scientific Book Chapters, in: Masaaki Kijima & Chiaki Hara & Keiichi Tanaka & Yukio Muromachi (ed.), Recent Advances In Financial Engineering 2009, chapter 10, pages 231-251, World Scientific Publishing Co. Pte. Ltd..
    17. Geoffrey Poitras, 1998. "Spread options, exchange options, and arithmetic Brownian motion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(5), pages 487-517, August.
    18. Kohta Takehara & Akihiko Takahashi & Masashi Toda, 2010. "New Unified Computational Algorithm in a High-Order Asymptotic Expansion Scheme," CIRJE F-Series CIRJE-F-728, CIRJE, Faculty of Economics, University of Tokyo.
    19. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    20. Masaaki Kijima & Chiaki Hara & Keiichi Tanaka & Yukio Muromachi (ed.), 2010. "Recent Advances in Financial Engineering 2009," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7700, January.
    21. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    22. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    23. Yasaman Karami & Kenichiro Shiraya, 2018. "An approximation formula for normal implied volatility under general local stochastic volatility models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1043-1061, September.
    24. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    25. Cyril Grunspan, 2011. "A Note on the Equivalence between the Normal and the Lognormal Implied Volatility : A Model Free Approach," Papers 1112.1782, arXiv.org.
    26. Manuela Larguinho & José Carlos Dias & Carlos A. Braumann, 2013. "On the computation of option prices and Greeks under the CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 907-917, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Guterding, 2023. "Sparse Modeling Approach to the Arbitrage-Free Interpolation of Plain-Vanilla Option Prices and Implied Volatilities," Risks, MDPI, vol. 11(5), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2022. "A Black–Scholes user's guide to the Bachelier model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 959-980, May.
    2. Choi, Jaehyuk & Wu, Lixin, 2021. "The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic-alpha-beta-rho (SABR) model," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    3. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Carey, Alexander, 2006. "Path-conditional forward volatility," MPRA Paper 4964, University Library of Munich, Germany.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    8. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    9. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    10. Juliusz Jabłecki & Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk & Piotr Wójcik, 2014. "Simple heuristics for pricing VIX options," Working Papers 2014-25, Faculty of Economic Sciences, University of Warsaw.
    11. Minqiang Li & Kyuseok Lee, 2011. "An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
    12. Robert Brooks & Joshua A. Brooks, 2017. "An Option Valuation Framework Based On Arithmetic Brownian Motion: Justification And Implementation Issues," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(3), pages 401-427, September.
    13. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
    14. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.
    15. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, January.
    16. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
    17. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    18. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    19. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    20. Olkhov, Victor, 2020. "Classical Option Pricing and Some Steps Further," MPRA Paper 105431, University Library of Munich, Germany, revised 28 Dec 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.08686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.