IDEAS home Printed from https://ideas.repec.org/a/bla/jfnres/v40y2017i3p401-427.html
   My bibliography  Save this article

An Option Valuation Framework Based On Arithmetic Brownian Motion: Justification And Implementation Issues

Author

Listed:
  • Robert Brooks
  • Joshua A. Brooks

Abstract

No abstract is available for this item.

Suggested Citation

  • Robert Brooks & Joshua A. Brooks, 2017. "An Option Valuation Framework Based On Arithmetic Brownian Motion: Justification And Implementation Issues," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(3), pages 401-427, September.
  • Handle: RePEc:bla:jfnres:v:40:y:2017:i:3:p:401-427
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jfir.12129
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. Kairys, Joseph P, Jr & Valerio, Nicholas, III, 1997. "The Market for Equity Options in the 1870s," Journal of Finance, American Finance Association, vol. 52(4), pages 1707-1723, September.
    3. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    4. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    5. Black, Fischer & Scholes, Myron S, 1972. "The Valuation of Option Contracts and a Test of Market Efficiency," Journal of Finance, American Finance Association, vol. 27(2), pages 399-417, May.
    6. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    7. Jaehyuk Choi & Kwangmoon Kim & Minsuk Kwak, 2009. "Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 261-268.
    8. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    9. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    14. MacBeth, James D & Merville, Larry J, 1979. "An Empirical Examination of the Black-Scholes Call Option Pricing Model," Journal of Finance, American Finance Association, vol. 34(5), pages 1173-1186, December.
    15. Geoffrey Poitras, 1998. "Spread options, exchange options, and arithmetic Brownian motion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(5), pages 487-517, August.
    16. J. Austin Murphy, 1990. "A Modification and Re-Examination of the Bachelier Option Pricing Model," The American Economist, Sage Publications, vol. 34(2), pages 34-41, October.
    17. Geske, Robert, 1979. "The valuation of compound options," Journal of Financial Economics, Elsevier, vol. 7(1), pages 63-81, March.
    18. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    19. A. James Boness, 1964. "Elements of a Theory of Stock-Option Value," Journal of Political Economy, University of Chicago Press, vol. 72, pages 163-163.
    20. Nina Mazar & Kristina Shampanier & Dan Ariely, 2017. "When Retailing and Las Vegas Meet: Probabilistic Free Price Promotions," Management Science, INFORMS, vol. 63(1), pages 250-266, January.
    21. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    22. Lyndon Moore & Steve Juh, 2006. "Derivative Pricing 60 Years before Black–Scholes: Evidence from the Johannesburg Stock Exchange," Journal of Finance, American Finance Association, vol. 61(6), pages 3069-3098, December.
    23. Chiras, Donald P. & Manaster, Steven, 1978. "The information content of option prices and a test of market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 213-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    2. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2021. "A Black-Scholes user's guide to the Bachelier model," Papers 2104.08686, arXiv.org, revised Feb 2022.
    3. Nancy Asare Nyarko & Bhathiya Divelgama & Jagdish Gnawali & Blessing Omotade & Svetlozar Rachev & Peter Yegon, 2023. "Exploring Dynamic Asset Pricing within Bachelier Market Model," Papers 2307.04059, arXiv.org.
    4. Matta Uma Maheswara Reddy, 2019. "Option pricing under normal dynamics with stochastic volatility," Papers 1909.08047, arXiv.org, revised Oct 2019.
    5. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2022. "A Black–Scholes user's guide to the Bachelier model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 959-980, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    6. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    7. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    8. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    9. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    10. Chambers, David, 2019. "Commodity Option Pricing Efficiency before Black Scholes Merton," CEPR Discussion Papers 13975, C.E.P.R. Discussion Papers.
    11. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    12. Scholes, Myron S, 1998. "Derivatives in a Dynamic Environment," American Economic Review, American Economic Association, vol. 88(3), pages 350-370, June.
    13. Huang, Yu Chuan & Chen, Shing Chun, 2002. "Warrants pricing: Stochastic volatility vs. Black-Scholes," Pacific-Basin Finance Journal, Elsevier, vol. 10(4), pages 393-409, September.
    14. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    15. Aurell, Erik & Baviera, Roberto & Hammarlid, Ola & Serva, Maurizio & Vulpiani, Angelo, 2000. "Growth optimal investment and pricing of derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 505-521.
    16. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457, Decembrie.
    17. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    18. Gurupdesh S. Pandher, 2007. "Regression-based modeling of market option prices: with application to S&P500 options," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 475-496.
    19. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    20. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfnres:v:40:y:2017:i:3:p:401-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.