IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.06673.html
   My bibliography  Save this paper

Quant GANs: Deep Generation of Financial Time Series

Author

Listed:
  • Magnus Wiese
  • Robert Knobloch
  • Ralf Korn
  • Peter Kretschmer

Abstract

Modeling financial time series by stochastic processes is a challenging task and a central area of research in financial mathematics. As an alternative, we introduce Quant GANs, a data-driven model which is inspired by the recent success of generative adversarial networks (GANs). Quant GANs consist of a generator and discriminator function, which utilize temporal convolutional networks (TCNs) and thereby achieve to capture long-range dependencies such as the presence of volatility clusters. The generator function is explicitly constructed such that the induced stochastic process allows a transition to its risk-neutral distribution. Our numerical results highlight that distributional properties for small and large lags are in an excellent agreement and dependence properties such as volatility clusters, leverage effects, and serial autocorrelations can be generated by the generator function of Quant GANs, demonstrably in high fidelity.

Suggested Citation

  • Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2019. "Quant GANs: Deep Generation of Financial Time Series," Papers 1907.06673, arXiv.org, revised Dec 2019.
  • Handle: RePEc:arx:papers:1907.06673
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.06673
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    2. Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2021. "Generative adversarial networks for financial trading strategies fine-tuning and combination," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 797-813, May.
    3. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Chen, Xue & Jiao, Pengfei & Yu, Yandong & Li, Xiaoming & Tang, Minghu, 2019. "Toward link predictability of bipartite networks based on structural enhancement and structural perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timur Sattarov & Marco Schreyer & Damian Borth, 2023. "FinDiff: Diffusion Models for Financial Tabular Data Generation," Papers 2309.01472, arXiv.org.
    2. Rizzato, Matteo & Wallart, Julien & Geissler, Christophe & Morizet, Nicolas & Boumlaik, Noureddine, 2023. "Generative Adversarial Networks applied to synthetic financial scenarios generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    3. Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
    4. Florian Eckerli & Joerg Osterrieder, 2021. "Generative Adversarial Networks in finance: an overview," Papers 2106.06364, arXiv.org, revised Jul 2021.
    5. Ruslan Tepelyan & Achintya Gopal, 2023. "Generative Machine Learning for Multivariate Equity Returns," Papers 2311.14735, arXiv.org.
    6. Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
    7. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Tan & Zili Zhang & Xuejun Zhao & Shuyi Wang, 2022. "DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    2. Andrea Di Iura & Giulia Terenzi, 2022. "A Bayesian analysis of gain-loss asymmetry," SN Business & Economics, Springer, vol. 2(5), pages 1-23, May.
    3. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    4. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.
    5. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    6. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Papers 2207.05701, arXiv.org.
    7. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    8. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    9. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Applied Economics and Finance, Redfame publishing, vol. 9(3), pages 55-68, August.
    10. Aleksejus Kononovicius & Julius Ruseckas, 2014. "Nonlinear GARCH model and 1/f noise," Papers 1412.6244, arXiv.org, revised Feb 2015.
    11. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    12. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    13. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    14. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    15. Liu Ziyin & Kentaro Minami & Kentaro Imajo, 2021. "Theoretically Motivated Data Augmentation and Regularization for Portfolio Construction," Papers 2106.04114, arXiv.org, revised Dec 2022.
    16. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.
    17. Kononovicius, A. & Ruseckas, J., 2015. "Nonlinear GARCH model and 1/f noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 74-81.
    18. Fig-Talamanca, Gianna, 2009. "Testing volatility autocorrelation in the constant elasticity of variance stochastic volatility model," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2201-2218, April.
    19. Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
    20. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.06673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.