Advanced Search
MyIDEAS: Login

Probability distribution of returns in the Heston model with stochastic volatility

Contents:

Author Info

  • Adrian A. Dragulescu
  • Victor M. Yakovenko
Registered author(s):

    Abstract

    We study the Heston model, where the stock price dynamics is governed by a geometrical (multiplicative) Brownian motion with stochastic variance. We solve the corresponding Fokker-Planck equation exactly and, after integrating out the variance, find an analytic formula for the time-dependent probability distribution of stock price changes (returns). The formula is in excellent agreement with the Dow-Jones index for the time lags from 1 to 250 trading days. For large returns, the distribution is exponential in log-returns with a time-dependent exponent, whereas for small returns it is Gaussian. For time lags longer than the relaxation time of variance, the probability distribution can be expressed in a scaling form using a Bessel function. The Dow-Jones data for 1982-2001 follow the scaling function for seven orders of magnitude.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/cond-mat/0203046
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number cond-mat/0203046.

    as in new window
    Length:
    Date of creation: Mar 2002
    Date of revision: Nov 2002
    Publication status: Published in Quantitative Finance 2, 443 (2002)
    Handle: RePEc:arx:papers:cond-mat/0203046

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Andreas Behr & Ulrich Pötter, 2009. "Alternatives to the normal model of stock returns: Gaussian mixture, generalised logF and generalised hyperbolic models," Annals of Finance, Springer, vol. 5(1), pages 49-68, January.
    2. Chiang, Thomas C. & Yu, Hai-Chin & Wu, Ming-Chya, 2009. "Statistical properties, dynamic conditional correlation and scaling analysis: Evidence from Dow Jones and Nasdaq high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1555-1570.
    3. Benoit Pochard & Jean-Philippe Bouchaud, 2003. "Option pricing and hedging with minimum expected shortfall," Science & Finance (CFM) working paper archive 500029, Science & Finance, Capital Fund Management.
    4. Anca Gheorghiu & Ion Spanulescu, 2009. "Macrostate Parameter, an Econophysics Approach for the Risk Analysis of the Stock Exchange Market Transactions," Papers 0907.5600, arXiv.org.
    5. Agnieszka Janek & Tino Kluge & Rafał Weron & Uwe Wystup, 2010. "FX Smile in the Heston Model," SFB 649 Discussion Papers SFB649DP2010-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. P. Friz & S. Gerhold & A. Gulisashvili & S. Sturm, 2010. "On refined volatility smile expansion in the Heston model," Papers 1001.3003, arXiv.org, revised Nov 2010.
    7. Giacomo Bormetti & Valentina Cazzola & Danilo Delpini, 2009. "Option pricing under Ornstein-Uhlenbeck stochastic volatility: a linear model," Papers 0905.1882, arXiv.org, revised May 2010.
    8. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    9. Andrew Papanicolaou, 2014. "Stochastic Analysis Seminar on Filtering Theory," Papers 1406.1936, arXiv.org.
    10. Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
    11. Nakamura, Tomomichi & Small, Michael, 2007. "Tests of the random walk hypothesis for financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 599-615.
    12. Lisa Borland & Jean-Philippe Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management.
    13. Ballestra, Luca Vincenzo & Pacelli, Graziella & Zirilli, Francesco, 2007. "A numerical method to price exotic path-dependent options on an underlying described by the Heston stochastic volatility model," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3420-3437, November.
    14. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.
    15. Nathan L. Joseph & Gilles Daniel & David S. Bree, 2003. "Goodness-of-fit of the Heston model," Computing in Economics and Finance 2003 281, Society for Computational Economics.
    16. A. Gulisashvili & E. M. Stein, 2009. "Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models," Papers 0906.0392, arXiv.org.
    17. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    18. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    19. Anca Gheorghiu & Ion Spanulescu, 2012. "An Econophysics Model for the Migration Phenomena," Papers 1202.0996, arXiv.org.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0203046. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.