IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.05513.html
   My bibliography  Save this paper

Optimal Credit Investment and Risk Control for an Insurer with Regime-Switching

Author

Listed:
  • Lijun Bo
  • Huafu Liao
  • Yongjin Wang

Abstract

This paper studies an optimal investment and risk control problem for an insurer with default contagion and regime-switching. The insurer in our model allocates his/her wealth across multi-name defaultable stocks and a riskless bond under regime-switching risk. Default events have an impact on the distress state of the surviving stocks in the portfolio. The aim of the insurer is to maximize the expected utility of the terminal wealth by selecting optimal investment and risk control strategies. We characterize the optimal trading strategy of defaultable stocks and risk control for the insurer. By developing a truncation technique, we analyze the existence and uniqueness of global (classical) solutions to the recursive HJB system. We prove the verification theorem based on the (classical) solutions of the recursive HJB system.

Suggested Citation

  • Lijun Bo & Huafu Liao & Yongjin Wang, 2018. "Optimal Credit Investment and Risk Control for an Insurer with Regime-Switching," Papers 1807.05513, arXiv.org.
  • Handle: RePEc:arx:papers:1807.05513
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.05513
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5717 is not listed on IDEAS
    2. Peter Carr & Liuren Wu, 2010. "Stock Options and Credit Default Swaps: A Joint Framework for Valuation and Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 409-449, Fall.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    5. Peter M. Jones, 2010. "Trade Credit Insurance," World Bank Publications - Reports 27726, The World Bank Group.
    6. John Y. Campbell & Glen B. Taksler, 2003. "Equity Volatility and Corporate Bond Yields," Journal of Finance, American Finance Association, vol. 58(6), pages 2321-2350, December.
    7. Robert J. Elliott & Tak Kuen Siu, 2009. "Robust Optimal Portfolio Choice Under Markovian Regime-switching Model," Methodology and Computing in Applied Probability, Springer, vol. 11(2), pages 145-157, June.
    8. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    9. Peng, Xingchun & Wang, Wenyuan, 2016. "Optimal investment and risk control for an insurer under inside information," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 104-116.
    10. Rafael Mendoza-Arriaga & Vadim Linetsky, 2016. "Multivariate Subordination Of Markov Processes With Financial Applications," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 699-747, October.
    11. Bin Zou & Abel Cadenillas, 2014. "Optimal Investment and Risk Control Problem for an Insurer: Expected Utility Maximization," Papers 1402.3560, arXiv.org, revised Mar 2014.
    12. Rüdiger Frey & Jochen Backhaus, 2008. "Pricing And Hedging Of Portfolio Credit Derivatives With Interacting Default Intensities," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 611-634.
    13. Bin Zou & Abel Cadenillas, 2017. "Optimal Investment and Liability Ratio Policies in a Multidimensional Regime Switching Model," Risks, MDPI, vol. 5(1), pages 1-22, January.
    14. Zou, Bin & Cadenillas, Abel, 2014. "Optimal investment and risk control policies for an insurer: Expected utility maximization," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 57-67.
    15. John R. Birge & Lijun Bo & Agostino Capponi, 2018. "Risk-Sensitive Asset Management and Cascading Defaults," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijun Bo & Agostino Capponi, 2018. "Portfolio Choice with Market-Credit Risk Dependencies," Papers 1806.07175, arXiv.org.
    2. Jin-Ray Lu & Chih-Ming Chan, 2014. "Optimal portfolio choice of gold assets in the differential market and differential game structures," Review of Quantitative Finance and Accounting, Springer, vol. 42(2), pages 309-325, February.
    3. Fenge Chen & Bing Li & Xingchun Peng, 2022. "Portfolio Selection and Risk Control for an Insurer With Uncertain Time Horizon and Partial Information in an Anticipating Environment," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 635-659, June.
    4. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2020. "A Perturbation Approach to Optimal Investment, Liability Ratio, and Dividend Strategies," Papers 2012.06703, arXiv.org, revised May 2021.
    5. John R. Birge & Lijun Bo & Agostino Capponi, 2018. "Risk-Sensitive Asset Management and Cascading Defaults," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 1-28, February.
    6. Jun Deng & Huifeng Pan & Shuyu Zhang & Bin Zou, 2021. "Optimal Bitcoin trading with inverse futures," Annals of Operations Research, Springer, vol. 304(1), pages 139-163, September.
    7. Mohamed Badaoui & Begoña Fernández & Anatoliy Swishchuk, 2018. "An Optimal Investment Strategy for Insurers in Incomplete Markets," Risks, MDPI, vol. 6(2), pages 1-23, April.
    8. Igor V. Kravchenko & Vladislav V. Kravchenko & Sergii M. Torba & Jos'e Carlos Dias, 2017. "Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation," Papers 1712.08247, arXiv.org.
    9. Igor V. Kravchenko & Vladislav V. Kravchenko & Sergii M. Torba & José Carlos Dias, 2019. "Pricing Double Barrier Options On Homogeneous Diffusions: A Neumann Series Of Bessel Functions Representation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-24, September.
    10. Bin Zou & Abel Cadenillas, 2017. "Optimal Investment and Liability Ratio Policies in a Multidimensional Regime Switching Model," Risks, MDPI, vol. 5(1), pages 1-22, January.
    11. Claudio Fontana & Juan Miguel A. Montes, 2012. "A unified approach to pricing and risk management of equity and credit risk," Papers 1212.5395, arXiv.org, revised May 2013.
    12. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    13. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    14. Andreas Fagereng & Luigi Guiso & Davide Malacrino & Luigi Pistaferri, 2020. "Heterogeneity and Persistence in Returns to Wealth," Econometrica, Econometric Society, vol. 88(1), pages 115-170, January.
    15. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    16. John Y. Campbell & Luis M. Viceira & Joshua S. White, 2003. "Foreign Currency for Long-Term Investors," Economic Journal, Royal Economic Society, vol. 113(486), pages 1-25, March.
    17. Stephen Satchell & Susan Thorp, 2007. "Scenario Analysis with Recursive Utility: Dynamic Consumption Plans for Charitable Endowments," Research Paper Series 209, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    19. Orszag, J. Michael & Yang, Hong, 1995. "Portfolio choice with Knightian uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 19(5-7), pages 873-900.
    20. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.05513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.