IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1712.08247.html
   My bibliography  Save this paper

Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation

Author

Listed:
  • Igor V. Kravchenko
  • Vladislav V. Kravchenko
  • Sergii M. Torba
  • Jos'e Carlos Dias

Abstract

This paper develops a novel analytically tractable Neumann series of Bessel functions representation for pricing (and hedging) European-style double barrier knock-out options, which can be applied to the whole class of one-dimensional time-homogeneous diffusions even for the cases where the corresponding transition density is not known. The proposed numerical method is shown to be efficient and simple to implement. To illustrate the flexibility and computational power of the algorithm, we develop an extended jump to default model that is able to capture several empirical regularities commonly observed in the literature.

Suggested Citation

  • Igor V. Kravchenko & Vladislav V. Kravchenko & Sergii M. Torba & Jos'e Carlos Dias, 2017. "Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation," Papers 1712.08247, arXiv.org.
  • Handle: RePEc:arx:papers:1712.08247
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1712.08247
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoon Pelsser, 2000. "Pricing double barrier options using Laplace transforms," Finance and Stochastics, Springer, vol. 4(1), pages 95-104.
    2. Jos� Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    3. Kravchenko, Vladislav V. & Morelos, Samy & Torba, Sergii M., 2016. "Liouville transformation, analytic approximation of transmutation operators and solution of spectral problems," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 321-336.
    4. Kravchenko, Vladislav V. & Navarro, Luis J. & Torba, Sergii M., 2017. "Representation of solutions to the one-dimensional Schrödinger equation in terms of Neumann series of Bessel functions," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 173-192.
    5. Peter Carr & Liuren Wu, 2010. "Stock Options and Credit Default Swaps: A Joint Framework for Valuation and Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 409-449, Fall.
    6. Benjamin Yibin Zhang & Hao Zhou & Haibin Zhu, 2009. "Explaining Credit Default Swap Spreads with the Equity Volatility and Jump Risks of Individual Firms," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5099-5131, December.
    7. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    8. John Y. Campbell & Glen B. Taksler, 2003. "Equity Volatility and Corporate Bond Yields," Journal of Finance, American Finance Association, vol. 58(6), pages 2321-2350, December.
    9. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
    10. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    11. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    12. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    13. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2015. "Pricing and static hedging of American-style knock-in options on defaultable stocks," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 343-360.
    14. Boyle, Phelim P. & Tian, Yisong “Samâ€, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 241-264, June.
    15. Nunes, João Pedro Vidal, 2009. "Pricing American Options under the Constant Elasticity of Variance Model and Subject to Bankruptcy," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(5), pages 1231-1263, October.
    16. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    17. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    18. Cathrine Jessen & Rolf Poulsen, 2013. "Empirical performance of models for barrier option valuation," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 1-11, December.
    19. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298, October.
    20. Vadim Linetsky, 2004. "The Spectral Decomposition Of The Option Value," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 337-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor V. Kravchenko & Vladislav V. Kravchenko & Sergii M. Torba & José Carlos Dias, 2019. "Pricing Double Barrier Options On Homogeneous Diffusions: A Neumann Series Of Bessel Functions Representation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-24, September.
    2. Jos� Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    3. Dias, José Carlos & Vidal Nunes, João Pedro, 2018. "Universal recurrence algorithm for computing Nuttall, generalized Marcum and incomplete Toronto functions and moments of a noncentral χ2 random variable," European Journal of Operational Research, Elsevier, vol. 265(2), pages 559-570.
    4. Jia‐Hau Guo & Lung‐Fu Chang, 2020. "Repeated Richardson extrapolation and static hedging of barrier options under the CEV model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 974-988, June.
    5. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2015. "Pricing and static hedging of American-style knock-in options on defaultable stocks," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 343-360.
    6. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    7. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    8. Shiyu Song & Yongjin Wang, 2017. "Pricing double barrier options under a volatility regime-switching model with psychological barriers," Review of Derivatives Research, Springer, vol. 20(3), pages 255-280, October.
    9. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    10. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    11. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    12. C. Atkinson & S. Kazantzaki, 2009. "Double knock-out Asian barrier options which widen or contract as they approach maturity," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 329-340.
    13. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    14. Choe, Geon Ho & Koo, Ki Hwan, 2014. "Probability of multiple crossings and pricing of double barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 156-184.
    15. Rafael Mendoza-Arriaga & Vadim Linetsky, 2014. "Time-changed CIR default intensities with two-sided mean-reverting jumps," Papers 1403.5402, arXiv.org.
    16. Rafael Mendoza-Arriaga & Vadim Linetsky, 2011. "Pricing equity default swaps under the jump-to-default extended CEV model," Finance and Stochastics, Springer, vol. 15(3), pages 513-540, September.
    17. Campi, Luciano & Polbennikov, Simon & Sbuelz, Alessandro, 2009. "Systematic equity-based credit risk: A CEV model with jump to default," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 93-108, January.
    18. Keegan Mendonca & Vasileios E. Kontosakos & Athanasios A. Pantelous & Konstantin M. Zuev, 2018. "Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation," Papers 1803.03364, arXiv.org, revised Mar 2018.
    19. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007.
    20. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.08247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.