IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1709.09255.html
   My bibliography  Save this paper

A default system with overspilling contagion

Author

Listed:
  • Delia Coculescu
  • Gabriele Visentin

Abstract

In classical contagion models, default systems are Markovian conditionally on the observation of their stochastic environment, with interacting intensities. This necessitates that the environment evolves autonomously and is not influenced by the history of the default events. We extend the classical literature and allow a default system to have a contagious impact on its environment. In our framework, contagion can either be contained within the default system (i.e., direct contagion from a counterparty to another) or spill from the default system over its environment (indirect contagion). This type of model is of interest whenever one wants to capture within a model possible impacts of the defaults of a class of debtors on the more global economy and vice versa.

Suggested Citation

  • Delia Coculescu & Gabriele Visentin, 2017. "A default system with overspilling contagion," Papers 1709.09255, arXiv.org, revised May 2023.
  • Handle: RePEc:arx:papers:1709.09255
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1709.09255
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. El Karoui, Nicole & Jeanblanc, Monique & Jiao, Ying, 2017. "Dynamics of multivariate default system in random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3943-3965.
    2. Giesecke, Kay & Weber, Stefan, 2006. "Credit contagion and aggregate losses," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 741-767, May.
    3. Delia Coculescu & Monique Jeanblanc & Ashkan Nikeghbali, 2012. "Default times, no-arbitrage conditions and changes of probability measures," Finance and Stochastics, Springer, vol. 16(3), pages 513-535, July.
    4. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    5. Frey, Rüdiger & Backhaus, Jochen, 2010. "Dynamic hedging of synthetic CDO tranches with spread risk and default contagion," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 710-724, April.
    6. Nicole El Karoui & Monique Jeanblanc & Ying Jiao, 2017. "Dynamics of multivariate default system in random environment," Post-Print hal-01205753, HAL.
    7. R. J. Elliott & M. Jeanblanc & M. Yor, 2000. "On Models of Default Risk," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 179-195, April.
    8. Rüdiger Frey & Jochen Backhaus, 2008. "Pricing And Hedging Of Portfolio Credit Derivatives With Interacting Default Intensities," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 611-634.
    9. M. Davis & V. Lo, 2001. "Infectious defaults," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 382-387.
    10. Rüdiger Frey & Wolfgang Runggaldier, 2010. "Pricing credit derivatives under incomplete information: a nonlinear-filtering approach," Finance and Stochastics, Springer, vol. 14(4), pages 495-526, December.
    11. Tomasz R. Bielecki & Areski Cousin & Stéphane Crépey & Alexander Herbertsson, 2014. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 90-102, April.
    12. Rüdiger Frey & Thorsten Schmidt, 2009. "Pricing Corporate Securities Under Noisy Asset Information," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 403-421, July.
    13. Giesecke, Kay & Weber, Stefan, 2004. "Cyclical correlations, credit contagion, and portfolio losses," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3009-3036, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Tingqiang & Wang, Jiepeng & Liu, Haifei & He, Yuanping, 2019. "Contagion model on counterparty credit risk in the CRT market by considering the heterogeneity of counterparties and preferential-random mixing attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 458-480.
    2. Areski Cousin & Diana Dorobantu & Didier Rullière, 2013. "An extension of Davis and Lo's contagion model," Quantitative Finance, Taylor & Francis Journals, vol. 13(3), pages 407-420, February.
    3. Gagliardini, Patrick & Gouriéroux, Christian, 2013. "Correlated risks vs contagion in stochastic transition models," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2241-2269.
    4. Frey, Rüdiger & Backhaus, Jochen, 2010. "Dynamic hedging of synthetic CDO tranches with spread risk and default contagion," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 710-724, April.
    5. Herbertsson, Alexander, 2007. "Modelling Default Contagion Using Multivariate Phase-Type Distributions," Working Papers in Economics 271, University of Gothenburg, Department of Economics.
    6. Çetin, Umut, 2012. "On absolutely continuous compensators and nonlinear filtering equations in default risk models," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3619-3647.
    7. Pagès, Henri, 2013. "Bank monitoring incentives and optimal ABS," Journal of Financial Intermediation, Elsevier, vol. 22(1), pages 30-54.
    8. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    9. Qian, Qian & Chao, Xiangrui & Feng, Hairong, 2023. "Internal or external control? How to respond to credit risk contagion in complex enterprises network," International Review of Financial Analysis, Elsevier, vol. 87(C).
    10. Egloff, Daniel & Leippold, Markus & Vanini, Paolo, 2007. "A simple model of credit contagion," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2475-2492, August.
    11. Rüdiger Frey & Wolfgang Runggaldier, 2010. "Pricing credit derivatives under incomplete information: a nonlinear-filtering approach," Finance and Stochastics, Springer, vol. 14(4), pages 495-526, December.
    12. Herbertsson, Alexander, 2007. "Pricing Synthetic CDO Tranches in a Model with Default Contagion Using the Matrix-Analytic Approach," Working Papers in Economics 270, University of Gothenburg, Department of Economics.
    13. Henri Pages & Dylan Possamaï, 2014. "A mathematical treatment of bank monitoring incentives," Finance and Stochastics, Springer, vol. 18(1), pages 39-73, January.
    14. Wenqiong, Liu & Li, Shenghong, 2016. "Hedging default risks of CDO tranches in non-homogeneous Markovian contagion models," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 279-291.
    15. Jun Park, Jong & Jang, Hyun Jin, 2022. "An analytic approach To network-based modelling for contagious defaults," Finance Research Letters, Elsevier, vol. 44(C).
    16. Choe, Geon Ho & Choi, So Eun & Jang, Hyun Jin, 2020. "Assessment of time-varying systemic risk in credit default swap indices: Simultaneity and contagiousness," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    17. Bäuerle Nicole & Schmock Uwe, 2012. "Dependence properties of dynamic credit risk models," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 243-268, August.
    18. Wen-Qiong Liu & Wen-Li Huang, 2019. "Hedging Of Synthetic Cdo Tranches With Spread And Default Risk Based On A Combined Forecasting Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-17, March.
    19. Umut c{C}etin, 2012. "On absolutely continuous compensators and nonlinear filtering equations in default risk models," Papers 1205.1154, arXiv.org.
    20. Feng-Hui Yu & Wai-Ki Ching & Jia-Wen Gu & Tak-Kuen Siu, 2017. "Interacting default intensity with a hidden Markov process," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 781-794, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1709.09255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.