IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1706.09809.html
   My bibliography  Save this paper

Extreme portfolio loss correlations in credit risk

Author

Listed:
  • Andreas Muhlbacher
  • Thomas Guhr

Abstract

The stability of the financial system is associated with systemic risk factors such as the concurrent default of numerous small obligors. Hence it is of utmost importance to study the mutual dependence of losses for different creditors in the case of large, overlapping credit portfolios. We analytically calculate the multivariate joint loss distribution of several credit portfolios on a non-stationary market. To take fluctuating asset correlations into account we use an random matrix approach which preserves, as a much appreciated side effect, analytical tractability and drastically reduces the number of parameters. We show that for two disjoint credit portfolios diversification does not work in a correlated market. Additionally we find large concurrent portfolio losses to be rather likely. We show that significant correlations of the losses emerge not only for large portfolios with thousands of credit contracts but also for small portfolios consisting of a few credit contracts only. Furthermore we include subordination levels, which were established in collateralized debt obligations to protect the more senior tranches from high losses. We analytically corroborate the observation that an extreme loss of the subordinated creditor is likely to also yield a large loss of the senior creditor.

Suggested Citation

  • Andreas Muhlbacher & Thomas Guhr, 2017. "Extreme portfolio loss correlations in credit risk," Papers 1706.09809, arXiv.org.
  • Handle: RePEc:arx:papers:1706.09809
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1706.09809
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    2. Wagner, Wolf, 2010. "Diversification at financial institutions and systemic crises," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 373-386, July.
    3. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    4. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    5. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    6. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    7. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    8. Desislava Chetalova & Thilo A. Schmitt & Rudi Schäfer & Thomas Guhr, 2015. "Portfolio Return Distributions: Sample Statistics With Stochastic Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-16.
    9. Thilo A. Schmitt & Desislava Chetalova & Rudi Schafer & Thomas Guhr, 2013. "Non-Stationarity in Financial Time Series and Generic Features," Papers 1304.5130, arXiv.org, revised May 2013.
    10. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    11. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    12. Xudong An & Yongheng Deng & Joseph Nichols & Anthony Sanders, 2015. "What is Subordination About? Credit Risk and Subordination Levels in Commercial Mortgage-backed Securities (CMBS)," The Journal of Real Estate Finance and Economics, Springer, vol. 51(2), pages 231-253, August.
    13. Michael C Münnix & Rudi Schäfer & Thomas Guhr, 2014. "A Random Matrix Approach to Credit Risk," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Mühlbacher & Thomas Guhr, 2018. "Extreme Portfolio Loss Correlations in Credit Risk," Risks, MDPI, vol. 6(3), pages 1-25, July.
    2. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    3. Andreas Mühlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Risks, MDPI, vol. 6(2), pages 1-25, April.
    4. Thilo A. Schmitt & Rudi Schafer & Thomas Guhr, 2016. "Credit risk: Taking fluctuating asset correlations into account," Papers 1601.03015, arXiv.org.
    5. Joachim Sicking & Thomas Guhr & Rudi Schafer, 2016. "Concurrent Credit Portfolio Losses," Papers 1604.06917, arXiv.org, revised Jan 2017.
    6. Joachim Sicking & Thomas Guhr & Rudi Schäfer, 2018. "Concurrent credit portfolio losses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    7. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    8. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    9. Yan, Alice Xie & Shi, Jian & Wu, Chunchi, 2008. "Do macroeconomic variables matter for pricing default risk?," International Review of Economics & Finance, Elsevier, vol. 17(2), pages 279-291.
    10. Ephraim Clark & Geeta Lakshmi, 2003. "Controlling the risk: a case study of the Indian liquidity crisis 1990-92," Journal of International Development, John Wiley & Sons, Ltd., vol. 15(3), pages 285-298.
    11. Hamerle, Alfred & Liebig, Thilo & Rösch, Daniel, 2003. "Credit Risk Factor Modeling and the Basel II IRB Approach," Discussion Paper Series 2: Banking and Financial Studies 2003,02, Deutsche Bundesbank.
    12. Pankaj Baag, 2014. "Predicting The Probability Of Default Using Asset Correlation Of A Loan Portfolio," Working papers 151, Indian Institute of Management Kozhikode.
    13. Jakub Seidler & Petr Jakubík, 2009. "Implied Market Loss Given Default in the Czech Republic: Structural-Model Approach," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(1), pages 20-40, January.
    14. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    15. Damiano Brigo & Massimo Morini & Marco Tarenghi, 2009. "Credit Calibration with Structural Models: The Lehman case and Equity Swaps under Counterparty Risk," Papers 0912.4404, arXiv.org.
    16. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    17. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    18. International Association of Deposit Insurers, 2011. "Evaluation of Deposit Insurance Fund Sufficiency on the Basis of Risk Analysis," IADI Research Papers 11-11, International Association of Deposit Insurers.
    19. Ulrich Erlenmaier & Hans Gersbach, 2014. "Default Correlations in the Merton Model," Review of Finance, European Finance Association, vol. 18(5), pages 1775-1809.
    20. Alexander Lipton, 2015. "Modern Monetary Circuit Theory, Stability of Interconnected Banking Network, and Balance Sheet Optimization for Individual Banks," Papers 1510.07608, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1706.09809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.