Advanced Search
MyIDEAS: Login to save this paper or follow this series

Optimal simulation schemes for L\'evy driven stochastic differential equations

Contents:

Author Info

  • Arturo Kohatsu-Higa
  • Salvador Ortiz-Latorre
  • Peter Tankov

Abstract

We consider a general class of high order weak approximation schemes for stochastic differential equations driven by L\'evy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the L\'evy process with a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose L\'evy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arxiv.org/pdf/1204.4877
File Function: Latest version
Download Restriction: no

Bibliographic Info

Paper provided by arXiv.org in its series Papers with number 1204.4877.

as in new window
Length:
Date of creation: Apr 2012
Date of revision:
Handle: RePEc:arx:papers:1204.4877

Contact details of provider:
Web page: http://arxiv.org/

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kohatsu-Higa, Arturo & Tankov, Peter, 2010. "Jump-adapted discretization schemes for Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2258-2285, November.
  2. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer, vol. 13(4), pages 327-344, December.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1204.4877. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.