IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v42y2019i1d10.1007_s10203-019-00248-9.html
   My bibliography  Save this article

Lévy CARMA models for shocks in mortality

Author

Listed:
  • Asmerilda Hitaj

    (University of Milano-Bicocca)

  • Lorenzo Mercuri

    (University of Milan
    Japan Science and Technology Agency CREST)

  • Edit Rroji

    (Politecnico di Milano)

Abstract

Recent literature on mortality modeling suggests to include in the dynamics of mortality rates the effects of time, age, the interaction of these two and a term for possible shocks. In this paper we investigate models that use Legendre polynomials for the inclusion of age and cohort effects. In order to capture the dynamics of the shock term it is suggested to consider continuous autoregressive moving average (CARMA) models due to their flexibility in reproducing different autoregressive profiles of the shock term. In order to validate the proposed model, different life tables are considered. In particular the male life tables for New Zealand, Taiwan and Japan are used for the presentation of in-sample fitting. Empirical analysis suggests that the inclusion of more flexible models such as higher-order CARMA(p,q) models leads to better in-sample fitting.

Suggested Citation

  • Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
  • Handle: RePEc:spr:decfin:v:42:y:2019:i:1:d:10.1007_s10203-019-00248-9
    DOI: 10.1007/s10203-019-00248-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-019-00248-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-019-00248-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Pablo Antolin & Sebastian Schich & Juan Yermo, 2011. "The Economic Impact of Protracted Low Interest Rates on Pension Funds and Insurance Companies," OECD Journal: Financial Market Trends, OECD Publishing, vol. 2011(1), pages 237-256.
    3. Brockwell, Peter J. & Davis, Richard A. & Yang, Yu, 2011. "Estimation for Non-Negative Lévy-Driven CARMA Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 250-259.
    4. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    5. Peter J. Brockwell & Richard A. Davis & Yu Yang, 2011. "Estimation for Non-Negative Lévy-Driven CARMA Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 250-259, April.
    6. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.
    7. Loregian, Angela & Mercuri, Lorenzo & Rroji, Edit, 2012. "Approximation of the variance gamma model with a finite mixture of normals," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 217-224.
    8. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
    9. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    10. Renshaw, A.E. & Haberman, S. & Hatzopoulos, P., 1996. "The Modelling of Recent Mortality Trends in United Kingdom Male Assured Lives," British Actuarial Journal, Cambridge University Press, vol. 2(2), pages 449-477, June.
    11. Edit Rroji & Lorenzo Mercuri, 2015. "Mixed tempered stable distribution," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1559-1569, September.
    12. Stefano Iacus & Lorenzo Mercuri, 2015. "Implementation of Lévy CARMA model in Yuima package," Computational Statistics, Springer, vol. 30(4), pages 1111-1141, December.
    13. Ballotta, Laura & Haberman, Steven, 2006. "The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 195-214, February.
    14. Ahmadi, Seyed Saeed & Gaillardetz, Patrice, 2015. "Modeling mortality and pricing life annuities with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 337-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Mercuri & Andrea Perchiazzo & Edit Rroji, 2020. "Finite Mixture Approximation of CARMA(p,q) Models," Papers 2005.10130, arXiv.org, revised May 2020.
    2. Stefano Iacus & Lorenzo Mercuri, 2015. "Implementation of Lévy CARMA model in Yuima package," Computational Statistics, Springer, vol. 30(4), pages 1111-1141, December.
    3. Hitaj, Asmerilda & Mercuri, Lorenzo & Rroji, Edit, 2015. "Portfolio selection with independent component analysis," Finance Research Letters, Elsevier, vol. 15(C), pages 146-159.
    4. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.
    5. Lorenzo Mercuri & Edit Rroji, 2014. "Parametric Risk Parity," Papers 1409.7933, arXiv.org.
    6. Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    7. Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
    8. Ahmadi, Seyed Saeed & Gaillardetz, Patrice, 2015. "Modeling mortality and pricing life annuities with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 337-350.
    9. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    10. Lorenzo Mercuri & Edit Rroji, 2018. "Risk parity for Mixed Tempered Stable distributed sources of risk," Annals of Operations Research, Springer, vol. 260(1), pages 375-393, January.
    11. Benth, Fred Espen & Klüppelberg, Claudia & Müller, Gernot & Vos, Linda, 2014. "Futures pricing in electricity markets based on stable CARMA spot models," Energy Economics, Elsevier, vol. 44(C), pages 392-406.
    12. Iacus, Stefano M. & Mercuri, Lorenzo & Rroji, Edit, 2017. "COGARCH(p, q): Simulation and Inference with the yuima Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i04).
    13. Sampaio, Jhames M. & Morettin, Pedro A., 2020. "Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 67-83.
    14. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    15. Fang, Jun & Jiang, Fan & Liu, Yong & Yang, Jingping, 2020. "Copula-based Markov process," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 166-187.
    16. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    17. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    18. Kathrin Glau, 2015. "Feynman-Kac formula for L\'evy processes with discontinuous killing rate," Papers 1502.07531, arXiv.org, revised Nov 2015.
    19. Küchler, Uwe & Naumann, Eva, 2003. "Markovian short rates in a forward rate model with a general class of Lévy processes," SFB 373 Discussion Papers 2003,6, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    20. Steven Heston, 2007. "A model of discontinuous interest rate behavior, yield curves, and volatility," Review of Derivatives Research, Springer, vol. 10(3), pages 205-225, December.

    More about this item

    Keywords

    Force of mortality; CARMA(p; q) model; Lévy process;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:42:y:2019:i:1:d:10.1007_s10203-019-00248-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.