Advanced Search
MyIDEAS: Login to save this paper or follow this series

Volatility Effects on the Escape Time in Financial Market Models

Contents:

Author Info

  • Bernardo Spagnolo
  • Davide Valenti
Registered author(s):

    Abstract

    We shortly review the statistical properties of the escape times, or hitting times, for stock price returns by using different models which describe the stock market evolution. We compare the probability function (PF) of these escape times with that obtained from real market data. Afterwards we analyze in detail the effect both of noise and different initial conditions on the escape time in a market model with stochastic volatility and a cubic nonlinearity. For this model we compare the PF of the stock price returns, the PF of the volatility and the return correlation with the same statistical characteristics obtained from real market data.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/0810.1625
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 0810.1625.

    as in new window
    Length:
    Date of creation: Oct 2008
    Date of revision:
    Publication status: Published in Intern. Journ. of Bifurcation and Chaos, Vol. 18, No. 9, 2775 - 2786 (2008)
    Handle: RePEc:arx:papers:0810.1625

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Jean-Philippe Bouchaud, 2002. "An introduction to statistical finance," Science & Finance (CFM) working paper archive 313238, Science & Finance, Capital Fund Management.
    2. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    3. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    4. Miquel Montero & Josep Perello & Jaume Masoliver & Fabrizio Lillo & Salvatore Micciche & Rosario N. Mantegna, 2005. "Scaling and data collapse for the mean exit time of asset prices," Papers physics/0507054, arXiv.org.
    5. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    6. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    7. A. Dragulescu & V. M. Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Computing in Economics and Finance 2002 127, Society for Computational Economics.
    8. Adrian A. Dragulescu & Victor M. Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Papers cond-mat/0203046, arXiv.org, revised Nov 2002.
    9. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    10. J-P. Bouchaud, 2001. "Power laws in economics and finance: some ideas from physics," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 105-112.
    11. G. Bonanno & D. Valenti & B. Spagnolo, 2006. "Role of noise in a market model with stochastic volatility," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 53(3), pages 405-409, October.
    12. Silva, A.Christian & Yakovenko, Victor M., 2003. "Comparison between the probability distribution of returns in the Heston model and empirical data for stock indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 303-310.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Silva, A. Christian & Prange, Richard E. & Yakovenko, Victor M., 2004. "Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 227-235.
    15. A. Christian Silva & Richard E. Prange & Victor M. Yakovenko, 2004. "Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact," Papers cond-mat/0401225, arXiv.org, revised Jul 2004.
    16. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
    17. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    18. Ofer Malcai & Ofer Biham & Peter Richmond & Sorin Solomon, 2002. "Theoretical Analysis and Simulations of the Generalized Lotka-Volterra Model," Papers cond-mat/0208514, arXiv.org.
    19. Jean-Philippe Bouchaud & Rama Cont, 1998. "A Langevin approach to stock market fluctuations and crashes," Science & Finance (CFM) working paper archive 500027, Science & Finance, Capital Fund Management.
    20. G. Bonanno & D. Valenti & B. Spagnolo, 2005. "Role of Noise in a Market Model with Stochastic Volatility," Papers cond-mat/0510154, arXiv.org, revised Oct 2006.
    21. Bouchaud, Jean-Philippe, 2002. "An introduction to statistical finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(1), pages 238-251.
    22. Lisa Borland, 2002. "A theory of non-Gaussian option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 415-431.
    23. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0810.1625. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.