IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/333177.html
   My bibliography  Save this paper

The Uncertain Future of Biofuels in China and the Impacts on the Food-Land-Water Nexus: A Multi-scale Analysis

Author

Listed:
  • Wang, Zhan
  • Liu, Jing
  • Hertel, Thomas

Abstract

With biofuel’s co-benefits of relieving dependence on fossil fuel and reducing greenhouse gas emissions, it would be increasingly important to expand the consumption of biofuel in order to achieve sustainable development. By far, China has set up ambitious targets on improving its biofuel usage. However, considering future socio-economic development, impacts of biofuel expansion on China’s crop production and input use remains uncertain. To address this question with an integrated analytical framework, we developed the Simplified International Model of agricultural Prices, Land use and the Environment: Gridded version for China (SIMPLE-G-China), a partial equilibrium model following the global-local-global approach, to research the impact of biofuel demand on China’s crop production and inputs use. Based on simulations of four policy scenarios projecting to 2040, it is found that the increased demand of crop as food sector inputs and technology improvement are key factors for future crop production and input use in China, while impacts from biofuel expansion would be moderate. Also, the model shows the spatial variance of impacts on crop production, land and water use. Findings from this study would provide insights for government to formulate more efficient biofuel policies, improve policy assessment, and facilitate stakeholder’s decision making.

Suggested Citation

  • Wang, Zhan & Liu, Jing & Hertel, Thomas, 2020. "The Uncertain Future of Biofuels in China and the Impacts on the Food-Land-Water Nexus: A Multi-scale Analysis," Conference papers 333177, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:333177
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/333177/files/10130.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Hong & Zhou, Yuan & Liu, Junguo, 2009. "Land and water requirements of biofuel and implications for food supply and the environment in China," Energy Policy, Elsevier, vol. 37(5), pages 1876-1885, May.
    2. Liu, Jing & Hertel, Thomas W. & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz C. & Grogan, Danielle S. & Frolking, Steve, 2017. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Security and Land Use," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258118, Agricultural and Applied Economics Association.
    3. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kgathi, Donald L. & Mfundisi, K.B. & Mmopelwa, G. & Mosepele, K., 2012. "Potential impacts of biofuel development on food security in Botswana: A contribution to energy policy," Energy Policy, Elsevier, vol. 43(C), pages 70-79.
    2. Wang, Changbo & Malik, Arunima & Wang, Yafei & Chang, Yuan & Pang, Mingyue & Zhou, Dequn, 2020. "Understanding the resource-use and environmental impacts of bioethanol production in China based on a MRIO-based hybrid LCA model," Energy, Elsevier, vol. 203(C).
    3. Silalertruksa, Thapat & Gheewala, Shabbir H., 2010. "Security of feedstocks supply for future bio-ethanol production in Thailand," Energy Policy, Elsevier, vol. 38(11), pages 7476-7486, November.
    4. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    5. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    6. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    7. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    8. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    9. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    10. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.
    11. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    13. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    14. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    15. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    16. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    17. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    18. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    19. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    20. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:333177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.