IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/209393.html
   My bibliography  Save this book chapter

Modeling autonomously controlled automobile terminal processes

In: Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 28

Author

Listed:
  • Görges, Michael
  • Freitag, Michael

Abstract

Purpose: Automobile terminals play an essential role in automotive supply chains. Due to short planning cycles and volatile planning information, the yard assignment determines terminals performance. Existing planning approaches are not able to cope with these dynamics. This contribution proposes a novel bio-analogue autonomous control method to face these dynamics, its effects and to improve the terminals performance. Methodology: Causes of internal and external terminals dynamics will be discussed and an autonomous control method will be derived. A generic 185arameterizable automobile terminal model and its implementation to a discrete event simulation will be introduced in this paper. This simulation is used to compare the new approach to classical yard assignment. Findings: This paper contributes to the theoretical understanding of causes and effects of dynamics in the context of automobile terminals. It will show that autonomous control outperforms classical approaches under highly dynamic conditions. Originality: The generic modelling approach is a novel description of automobile terminals. It allows investigations of a broad spectrum of use cases. Moreover, the bio-analogue autonomous control for automobile terminals is an innovative approach.

Suggested Citation

  • Görges, Michael & Freitag, Michael, 2019. "Modeling autonomously controlled automobile terminal processes," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 186-214, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:209393
    DOI: 10.15480/882.2497
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/209393/1/hicl-2019-28-186.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.2497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cordeau, Jean-François & Laporte, Gilbert & Moccia, Luigi & Sorrentino, Gregorio, 2011. "Optimizing yard assignment in an automotive transshipment terminal," European Journal of Operational Research, Elsevier, vol. 215(1), pages 149-160, November.
    2. Mattfeld, D. C. & Kopfer, H., 2003. "Terminal operations management in vehicle transshipment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(5), pages 435-452, June.
    3. Hoff-Hoffmeyer-Zlotnik, Marit & Schukraft, Susanne & Werthmann, Dirk & Oelker, Stephan & Freitag, Michael, 2017. "Interactive planning and control for finished vehicle logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digitalization in Maritime and Sustainable Logistics: City Logistics, Port Logistics and Sustainable Supply Chain Management in the Digital Age. Proce, volume 24, pages 77-93, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Armbruster, D. & de Beer, C. & Freitag, M. & Jagalski, T. & Ringhofer, C., 2006. "Autonomous control of production networks using a pheromone approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Görges & Michael Freitag, 2022. "Design and Evaluation of an Integrated Autonomous Control Method for Automobile Terminals," Logistics, MDPI, vol. 6(4), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Görges & Michael Freitag, 2022. "Design and Evaluation of an Integrated Autonomous Control Method for Automobile Terminals," Logistics, MDPI, vol. 6(4), pages 1-27, October.
    2. Zhang, Di & Chen, Feng & Mei, Ziqiao, 2023. "Optimization on joint scheduling of yard allocation and transfer manpower assignment for automobile RO-RO terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Wang, Kai & Pesch, Erwin & Kress, Dominik & Fridman, Ilia & Boysen, Nils, 2022. "The Piggyback Transportation Problem: Transporting drones launched from a flying warehouse," European Journal of Operational Research, Elsevier, vol. 296(2), pages 504-519.
    4. Wang, Yu & Chen, Feng & Chen, Zhi-Long, 2018. "Pickup and delivery of automobiles from warehouses to dealers," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 412-430.
    5. Chen, Xiaojing & Li, Feng & Jia, Bin & Wu, Jianjun & Gao, Ziyou & Liu, Ronghui, 2021. "Optimizing storage location assignment in an automotive Ro-Ro terminal," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 249-281.
    6. Jone R. Hansen & Kjetil Fagerholt & Magnus Stålhane & Jørgen G. Rakke, 2020. "An adaptive large neighborhood search heuristic for the planar storage location assignment problem: application to stowage planning for Roll-on Roll-off ships," Journal of Heuristics, Springer, vol. 26(6), pages 885-912, December.
    7. Eduardo Alarcon-Gerbier & Zarina Chokparova & Nassim Ghondaghsaz & Wanqi Zhao & Hani Shahmoradi-Moghadam & Uwe Aßmann & Orçun Oruç, 2022. "Software-Defined Mobile Supply Chains: Rebalancing Resilience and Efficiency in Production Systems," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    8. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
    9. Sun, Yanshuo & Kirtonia, Sajeeb & Chen, Zhi-Long, 2021. "A survey of finished vehicle distribution and related problems from an optimization perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    10. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    11. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    12. H. L. Ma & S. H. Chung & H. K. Chan & Li Cui, 2019. "An integrated model for berth and yard planning in container terminals with multi-continuous berth layout," Annals of Operations Research, Springer, vol. 273(1), pages 409-431, February.
    13. Kim, Jindae & Ok, Chang-Soo & Kumara, Soundar & Yee, Shang-Tae, 2010. "A market-based approach for dynamic vehicle deployment planning using radio frequency identification (RFID) information," International Journal of Production Economics, Elsevier, vol. 128(1), pages 235-247, November.
    14. Göttlich, S. & Herty, M. & Ringhofer, C., 2010. "Optimization of order policies in supply networks," European Journal of Operational Research, Elsevier, vol. 202(2), pages 456-465, April.
    15. Zhi-Hua Hu & Yingxue Zhao & Sha Tao & Zhao-Han Sheng, 2015. "Finished-vehicle transporter routing problem solved by loading pattern discovery," Annals of Operations Research, Springer, vol. 234(1), pages 37-56, November.
    16. Emil Karlsson & Elina Rönnberg & Andreas Stenberg & Hannes Uppman, 2021. "A matheuristic approach to large-scale avionic scheduling," Annals of Operations Research, Springer, vol. 302(2), pages 425-459, July.
    17. Jin, Wen-Long, 2015. "Point queue models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 1-16.
    18. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
    19. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part I: Methodology and theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 55-74.
    20. Cordeau, Jean-François & Laporte, Gilbert & Moccia, Luigi & Sorrentino, Gregorio, 2011. "Optimizing yard assignment in an automotive transshipment terminal," European Journal of Operational Research, Elsevier, vol. 215(1), pages 149-160, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:209393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.