IDEAS home Printed from https://ideas.repec.org/h/elg/eechap/14021_50.html
   My bibliography  Save this book chapter

Statistical Methods for Cost-effectiveness Analysis Alongside Clinical Trials

In: The Elgar Companion to Health Economics, Second Edition

Author

Listed:
  • Andrew Briggs

Abstract

This comprehensive collection brings together more than 50 contributions from some of the most influential researchers in health economics. It authoritatively covers theoretical and empirical issues in health economics, with a balanced range of material on equity and efficiency in health care systems, health technology assessment and issues of concern for developing countries. This thoroughly revised second edition is expanded to include four new chapters, while all existing chapters have been extensively updated.

Suggested Citation

  • Andrew Briggs, 2012. "Statistical Methods for Cost-effectiveness Analysis Alongside Clinical Trials," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 50, Edward Elgar Publishing.
  • Handle: RePEc:elg:eechap:14021_50
    as

    Download full text from publisher

    File URL: https://www.elgaronline.com/view/9781849802673.00068.xml
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Manca & Nigel Rice & Mark J. Sculpher & Andrew H. Briggs, 2005. "Assessing generalisability by location in trial‐based cost‐effectiveness analysis: the use of multilevel models," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 471-485, May.
    2. Daniel F. Heitjan, 2000. "Fieller's method and net health benefits," Health Economics, John Wiley & Sons, Ltd., vol. 9(4), pages 327-335, June.
    3. Andrew R. Willan & Andrew H. Briggs & Jeffrey S. Hoch, 2004. "Regression methods for covariate adjustment and subgroup analysis for non‐censored cost‐effectiveness data," Health Economics, John Wiley & Sons, Ltd., vol. 13(5), pages 461-475, May.
    4. Jeffrey S. Hoch & Andrew H. Briggs & Andrew R. Willan, 2002. "Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 415-430, July.
    5. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits," Medical Decision Making, , vol. 18(2_suppl), pages 68-80, April.
    6. Mark J. Sculpher & Karl Claxton & Mike Drummond & Chris McCabe, 2006. "Whither trial‐based economic evaluation for health care decision making?," Health Economics, John Wiley & Sons, Ltd., vol. 15(7), pages 677-687, July.
    7. Negri­n, Miguel A. & Vázquez-Polo, Francisco-José, 2008. "Incorporating model uncertainty in cost-effectiveness analysis: A Bayesian model averaging approach," Journal of Health Economics, Elsevier, vol. 27(5), pages 1250-1259, September.
    8. Andrew H. Briggs & David E. Wonderling & Christopher Z. Mooney, 1997. "Pulling cost‐effectiveness analysis up by its bootstraps: A non‐parametric approach to confidence interval estimation," Health Economics, John Wiley & Sons, Ltd., vol. 6(4), pages 327-340, July.
    9. Ben A. Van Hout & Maiwenn J. Al & Gilad S. Gordon & Frans F. H. Rutten, 1994. "Costs, effects and C/E‐ratios alongside a clinical trial," Health Economics, John Wiley & Sons, Ltd., vol. 3(5), pages 309-319, September.
    10. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    11. Nicola J. Cooper & Alex J. Sutton & Keith R. Abrams & David Turner & Allan Wailoo, 2004. "Comprehensive decision analytical modelling in economic evaluation: a Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(3), pages 203-226, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    2. Richard M. Nixon & Simon G. Thompson, 2005. "Methods for incorporating covariate adjustment, subgroup analysis and between‐centre differences into cost‐effectiveness evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 14(12), pages 1217-1229, December.
    3. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    4. Quang Dang Nguyen & Mikhail Prokopenko, 2022. "A general framework for optimising cost-effectiveness of pandemic response under partial intervention measures," Papers 2205.08996, arXiv.org, revised Nov 2022.
    5. Daniel F. Heitjan & Huiling Li, 2004. "Bayesian estimation of cost‐effectiveness: an importance‐sampling approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(2), pages 191-198, February.
    6. Simon Eckermann & Andrew R. Willan, 2009. "Globally optimal trial design for local decision making," Health Economics, John Wiley & Sons, Ltd., vol. 18(2), pages 203-216, February.
    7. Jeffrey Hoch & Carolyn Dewa, 2007. "Lessons from Trial-Based Cost-Effectiveness Analyses of Mental Health Interventions," PharmacoEconomics, Springer, vol. 25(10), pages 807-816, October.
    8. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    9. Andrew Briggs & Paul Fenn, 1998. "Confidence intervals or surfaces? Uncertainty on the cost‐effectiveness plane," Health Economics, John Wiley & Sons, Ltd., vol. 7(8), pages 723-740, December.
    10. Lynch, Frances L. & Dickerson, John F. & Saldana, Lisa & Fisher, Phillip A., 2014. "Incremental net benefit of early intervention for preschool-aged children with emotional and behavioral problems in foster care," Children and Youth Services Review, Elsevier, vol. 36(C), pages 213-219.
    11. Andrea Manca & Nigel Rice & Mark J. Sculpher & Andrew H. Briggs, 2005. "Assessing generalisability by location in trial‐based cost‐effectiveness analysis: the use of multilevel models," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 471-485, May.
    12. John Mullahy, 2017. "Individual Results May Vary: Elementary Analytics of Inequality-Probability Bounds, with Applications to Health-Outcome Treatment Effects," NBER Working Papers 23603, National Bureau of Economic Research, Inc.
    13. Nicholas Illenberger & Nandita Mitra & Andrew J. Spieker, 2022. "A regression framework for a probabilistic measure of cost‐effectiveness," Health Economics, John Wiley & Sons, Ltd., vol. 31(7), pages 1438-1451, July.
    14. Richard Grieve & Richard Nixon & Simon G. Thompson & John Cairns, 2007. "Multilevel models for estimating incremental net benefits in multinational studies," Health Economics, John Wiley & Sons, Ltd., vol. 16(8), pages 815-826, August.
    15. Manca, A & Austin, P. C, 2008. "Using propensity score methods to analyse individual patient-level cost-effectiveness data from observational studies," Health, Econometrics and Data Group (HEDG) Working Papers 08/20, HEDG, c/o Department of Economics, University of York.
    16. Raymond C.W. Hutubessy & Rob M.P.M. Baltussen & David B. Evans & Jan J. Barendregt & Christopher J.L. Murray, 2001. "Stochastic league tables: communicating cost‐effectiveness results to decision‐makers," Health Economics, John Wiley & Sons, Ltd., vol. 10(5), pages 473-477, July.
    17. Elamin H. Elbasha, 2005. "Risk aversion and uncertainty in cost‐effectiveness analysis: the expected‐utility, moment‐generating function approach," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 457-470, May.
    18. Gafni, Amiram & Birch, Stephen, 2006. "Incremental cost-effectiveness ratios (ICERs): The silence of the lambda," Social Science & Medicine, Elsevier, vol. 62(9), pages 2091-2100, May.
    19. Nandita Mitra & Alka Indurkhya, 2005. "A propensity score approach to estimating the cost–effectiveness of medical therapies from observational data," Health Economics, John Wiley & Sons, Ltd., vol. 14(8), pages 805-815, August.
    20. Carmen Selva-Sevilla & F Dámaso Fernández-Ginés & Manuel Cortiñas-Sáenz & Manuel Gerónimo-Pardo, 2021. "Cost-effectiveness analysis of domiciliary topical sevoflurane for painful leg ulcers," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:elg:eechap:14021_50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Darrel McCalla (email available below). General contact details of provider: http://www.e-elgar.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.