IDEAS home Printed from https://ideas.repec.org/f/pji295.html
   My authors  Follow this author

Xueting Jiang

Personal Details

First Name:Xueting
Middle Name:
Last Name:Jiang
Suffix:
RePEc Short-ID:pji295
[This author has chosen not to make the email address public]

Affiliation

Crawford School of Public Policy
Australian National University

Canberra, Australia
https://crawford.anu.edu.au/
RePEc:edi:asanuau (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
  2. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
  3. Rongrong Li & Xue-Ting Jiang, 2017. "Inequality of Carbon Intensity: Empirical Analysis of China 2000–2014," Sustainability, MDPI, vol. 9(5), pages 1-12, April.
  4. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
  5. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.

    Cited by:

    1. Shakya, S.R. & Adhikari, R. & Poudel, S. & Rupakheti, M., 2022. "Energy equity as a major driver of energy intensity in South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

  2. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.

    Cited by:

    1. Eva Litavcová & Jana Chovancová, 2021. "Economic Development, CO 2 Emissions and Energy Use Nexus-Evidence from the Danube Region Countries," Energies, MDPI, vol. 14(11), pages 1-23, May.
    2. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    3. Loo, Becky P.Y. & Tsoi, Ka Ho & Banister, David, 2020. "Recent experiences and divergent pathways to transport decoupling," Journal of Transport Geography, Elsevier, vol. 88(C).
    4. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    5. Xiao-Yang Li & Tao Chen & Bin Chen, 2023. "Research on the Influencing Factors and Decoupling State of Carbon Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 15(15), pages 1-14, August.

  3. Rongrong Li & Xue-Ting Jiang, 2017. "Inequality of Carbon Intensity: Empirical Analysis of China 2000–2014," Sustainability, MDPI, vol. 9(5), pages 1-12, April.

    Cited by:

    1. Wanbei Jiang & Weidong Liu, 2020. "Provincial-Level CO 2 Emissions Intensity Inequality in China: Regional Source and Explanatory Factors of Interregional and Intraregional Inequalities," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    2. María-José Gutiérrez & Belén Inguanzo, 2019. "Contributing to Fisheries Sustainability: Inequality Analysis in the High Seas Catches of Countries," Sustainability, MDPI, vol. 11(11), pages 1-20, June.

  4. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.

    Cited by:

    1. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Coal and economic development in Pakistan: A necessity of energy source," Energy, Elsevier, vol. 207(C).
    2. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    3. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    4. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    5. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    6. Shahbaz, Muhammad & Abosedra, Salah & Kumar, Mantu & Abbas, Qaisar, 2020. "Environmental Consequence of Transportation Sector for USA: The Validation of Transportation Kuznets Curve," MPRA Paper 102167, University Library of Munich, Germany, revised 30 Jul 2020.
    7. Paulo M. De Oliveira-De Jesus & John J. Galvis & Daniela Rojas-Lozano & Jose M. Yusta, 2020. "Multitemporal LMDI Index Decomposition Analysis to Explain the Changes of ACI by the Power Sector in Latin America and the Caribbean between 1990–2017," Energies, MDPI, vol. 13(9), pages 1-14, May.
    8. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    9. Viktor Koval & Viktoriia Khaustova & Stella Lippolis & Olha Ilyash & Tetiana Salashenko & Piotr Olczak, 2023. "Fundamental Shifts in the EU’s Electric Power Sector Development: LMDI Decomposition Analysis," Energies, MDPI, vol. 16(14), pages 1-22, July.
    10. Chen, Jiandong & Xu, Chong & Song, Malin & Deng, Xiangzheng & Shen, Zhiyang, 2022. "Towards sustainable development: Distribution effect of carbon-food nexus in Chinese cities," Applied Energy, Elsevier, vol. 309(C).
    11. Olufunmilayo T. Afolayan & Henry Okodua & Hassan Oaikhenan & Oluwatoyin Matthew, 2020. "Carbon Emissions, Human Capital Investment and Economic Development in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 427-437.
    12. Zbigniew Gołaś, 2023. "Decoupling Analysis of Energy-Related Carbon Dioxide Emissions from Economic Growth in Poland," Energies, MDPI, vol. 16(9), pages 1-27, April.
    13. Oluwatoyin Matthew & Romanus Osabohien & Fasina Fagbeminiyi & Afolake Fasina, 2018. "Greenhouse Gas Emissions and Health Outcomes in Nigeria: Empirical Insight from Auto-regressive Distribution Lag Technique," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 43-50.
    14. Philip O. Alege & Queen-Esther Oye & Omobola O. Adu & Barnabas Amu & Tolu Owolabi, 2017. "Carbon Emissions and the Business Cycle in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 7(5), pages 1-8.
    15. Tatiana Farane Mein & André Luiz Veiga Gimenes & Eduardo Mario Dias & Maria Lídia Rebello Pinho Dias Scoton & Miguel Edgar Morales Udaeta, 2021. "Environmental Vulnerability in Pre-Salt Oil and Gas Operations," Energies, MDPI, vol. 14(3), pages 1-24, January.
    16. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    17. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    18. Rong Li & Zi Chen & Junyong Xiang, 2023. "A region-scale decoupling effort analysis of carbon dioxide emissions from the perspective of electric power industry: a case study of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4007-4032, May.
    19. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    20. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).
    21. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).

  5. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.

    Cited by:

    1. Yanli Ji & Jie Xue, 2022. "Decoupling Effect of County Carbon Emissions and Economic Growth in China: Empirical Evidence from Jiangsu Province," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    2. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    3. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    4. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    5. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    6. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    7. Shaoqi Sun & Yuanli Xie & Yunmei Li & Kansheng Yuan & Lifa Hu, 2022. "Analysis of Dynamic Evolution and Spatial-Temporal Heterogeneity of Carbon Emissions at County Level along “The Belt and Road”—A Case Study of Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    8. Sipan Li & Qunxi Gong & Shaolei Yang, 2019. "Analysis of the Agricultural Economy and Agricultural Pollution Using the Decoupling Index in Chengdu, China," IJERPH, MDPI, vol. 16(21), pages 1-11, October.
    9. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    10. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    11. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    12. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    13. Min Su & Shasha Wang & Rongrong Li & Ningning Guo, 2020. "Decomposition analysis of the decoupling process between economic growth and carbon emission in Beijing city, China: A sectoral perspective," Energy & Environment, , vol. 31(6), pages 961-982, September.
    14. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Xueting Jiang should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.