IDEAS home Printed from https://ideas.repec.org/a/zib/zbnees/v2y2018i2p39-41.html
   My bibliography  Save this article

Study On Optical Properties Of Graphene-Tio2 Nanocomposite As Photoanodes Layer In Dye Sensitized Solar Cell (Dssc)

Author

Listed:
  • M. F. Zulkapli

    (Department of Energy Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi, Malaysia, Johor)

  • N. M. Rashid

    (Department of Energy Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi, Malaysia, Johor)

  • Mohd Nazri Mohd Sokri

    (Department of Energy Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi, Malaysia, Johor)

  • Noorshawal Nasri

    (Department of Energy Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi, Malaysia, Johor)

Abstract

Dye Sensitized Solar Cell (DSSC) using titanium dioxide (TiO2) has begun to play a significant role in future solar energy since it is known as cost effective and highly efficient. DSSC is the third generation of photovoltaic cells that have been widely investigated as a promising replacement of current commercial solar cell. However, the highest efficiency of DSSC still has not achieved the minimum requirement so that it can be commercialize. Much research has been done to improve DSSC performance by focusing on photoanodes layer. In this study, graphene was employed into TiO2photoanode to increase the efficiency and to enhance the performance of dye sensitized solar cell. Four different samples of nanocomposites paste were prepared by varying the graphene composition of 0.00, 0.30, 0.50 and 0.70 wt%. The prepared samples were coated on Fluorine-Doped Tin Oxide (FTO) conductive glass substrates by a doctor blade method and annealed at 450oC for 30 minutes. The morphology and structure of the graphene-TiO2 nanocomposites layer were characterized by using Field Emission Scanning Electron Microscope (FESEM). The optical properties were studied by using UV-visible spectroscopy. Based on the result show that addition of graphene into TiO2 have provide larger surface area compared to pure TiO2. The optical properties of Graphene-TiO2 nanocomposites also improved as the fundamental of absorption edge has shifted toward longer wavelength and reduce the optical band gap.

Suggested Citation

  • M. F. Zulkapli & N. M. Rashid & Mohd Nazri Mohd Sokri & Noorshawal Nasri, 2018. "Study On Optical Properties Of Graphene-Tio2 Nanocomposite As Photoanodes Layer In Dye Sensitized Solar Cell (Dssc) ," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 2(2), pages 39-41, July.
  • Handle: RePEc:zib:zbnees:v:2:y:2018:i:2:p:39-41
    DOI: 10.26480/ees.02.2018.39.41
    as

    Download full text from publisher

    File URL: https://environecosystem.com/download/14178/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/ees.02.2018.39.41?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    3. Hossain, Md. Faruque, 2017. "Green science: Independent building technology to mitigate energy, environment, and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 695-705.
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    6. Ali, Hayder & Khan, Hassan Abbas, 2020. "Techno-economic evaluation of two 42 kWp polycrystalline-Si and CIS thin-film based PV rooftop systems in Pakistan," Renewable Energy, Elsevier, vol. 152(C), pages 347-357.
    7. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    8. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    9. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
    11. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    12. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Reda, Francesco & Fatima, Zarrin, 2019. "Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries," Applied Energy, Elsevier, vol. 237(C), pages 598-617.
    14. Zhao, Shuang & Li, Wenzhi & Abd El-Samie, Mostafa M. & Ju, Xing & Xu, Chao, 2022. "Numerical simulation to study the effect of spectral division of solar irradiance on the spectral splitting photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 182(C), pages 634-646.
    15. Savvas L. Douvartzides & Aristidis Tsiolikas & Nikolaos D. Charisiou & Manolis Souliotis & Vayos Karayannis & Nikolaos Taousanidis, 2022. "Energy and Exergy-Based Screening of Various Refrigerants, Hydrocarbons and Siloxanes for the Optimization of Biomass Boiler–Organic Rankine Cycle (BB–ORC) Heat and Power Cogeneration Plants," Energies, MDPI, vol. 15(15), pages 1-26, July.
    16. Qüinny Soares Rocha & Rafaele Almeida Munis & Richardson Barbosa Gomes da Silva & Elí Wilfredo Zavaleta Aguilar & Danilo Simões, 2023. "Photovoltaic Solar Energy in Forest Nurseries: A Strategic Decision Based on Real Options Analysis," Sustainability, MDPI, vol. 15(5), pages 1-11, February.
    17. Reda, Francesco & Paiho, Satu & Pasonen, Riku & Helm, Martin & Menhart, Florian & Schex, Richard & Laitinen, Ari, 2020. "Comparison of solar assisted heat pump solutions for office building applications in Northern climate," Renewable Energy, Elsevier, vol. 147(P1), pages 1392-1417.
    18. Liu, Taixiu & Bai, Zhang & Zheng, Zhimei & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2019. "100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Amjad, Muhammad & Raza, Ghulam & Xin, Yan & Pervaiz, Shahid & Xu, Jinliang & Du, Xiaoze & Wen, Dongsheng, 2017. "Volumetric solar heating and steam generation via gold nanofluids," Applied Energy, Elsevier, vol. 206(C), pages 393-400.
    20. Nematollahi, Omid & Kim, Kyung Chun, 2017. "A feasibility study of solar energy in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 566-579.

    More about this item

    Keywords

    Dye Sensitized Solar Cell; Graphene; TiO2; Doctor Blade;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnees:v:2:y:2018:i:2:p:39-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://environecosystem.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.