IDEAS home Printed from https://ideas.repec.org/a/zib/zbmjsa/v5y2021i2p67-76.html
   My bibliography  Save this article

Drought Stress Impacts On Wheat And Its Resistance Mechanisms

Author

Listed:
  • Bipin Rijal

    (Institute of Agriculture and Animal Science, Paklihawa, Rupandehi, Nepal)

  • Prakash Baduwal

    (Institute of Agriculture and Animal Science, Paklihawa, Rupandehi, Nepal)

  • Madhukar Chaudhary

    (Institute of Agriculture and Animal Science, Paklihawa, Rupandehi, Nepal)

  • Sandesh Chapagain

    (Institute of Agriculture and Animal Science, Paklihawa, Rupandehi, Nepal)

  • Sushank Khanal

    (Institute of Agriculture and Animal Science, Paklihawa, Rupandehi, Nepal.)

  • Saugat Khanal

    (Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal.)

  • Padam Bahadur Poudel

    (Institute of Agriculture and Animal Science, Paklihawa, Rupandehi, Nepal)

Abstract

Scarcity of water has been a serious agricultural hindrance to crop productivity since antiquity. Droughtstressed loss in wheat yield likely exceeds losses from all other causes, since both the severity and duration of the stress are censorious. Here, we have reviewed the effects of drought stress on the morphological, physiological, and biochemical attributes along with the growth impacts, water relations, and photosynthesis impacts in wheat. This review also illustrates the mechanism of drought resistance in wheat. Historical drought years in Nepal have been identified and the yield losses were assessed. Wheat encounters a variety of morphological, physiological, biochemical responses at cellular and molecular levels towards prevailing water stress, thus making it a complex phenomenon. Drought stress affects leaf size, stems elongation and root proliferation, imbalance plant-water relations and decline water-use efficiency. Different types of physiological research are ongoing to find out the changes occurs in the wheat plant as a result of drought stress. Morphological changes can be looked through two ways: changes in root system and changes in shoot system such as effects on height, leaf senescence, flowering, and so on. Physiological changes involve changes in cell growth pattern, chlorophyll contents, photosynthetic disturbances, plant-water relations, etc. Biochemical changes occur in different chemical, biomolecules, and enzymes. Plants portray several mechanisms to withstand drought stress which can be classified as Drought escape, Drought avoidance, and Drought tolerance. Selection of wheat genotype that can tolerate water scarcity would be suitable for the breeding program aiming to development of drought tolerant variety under water limited regions.

Suggested Citation

  • Bipin Rijal & Prakash Baduwal & Madhukar Chaudhary & Sandesh Chapagain & Sushank Khanal & Saugat Khanal & Padam Bahadur Poudel, 2021. "Drought Stress Impacts On Wheat And Its Resistance Mechanisms," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 5(2), pages 67-76, January.
  • Handle: RePEc:zib:zbmjsa:v:5:y:2021:i:2:p:67-76
    DOI: 10.26480/mjsa.02.2021.67.76
    as

    Download full text from publisher

    File URL: https://myjsustainagri.com/download/14492/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/mjsa.02.2021.67.76?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    2. Bing Liu & Senthold Asseng & Christoph Müller & Frank Ewert & Joshua Elliott & David B. Lobell & Pierre Martre & Alex C. Ruane & Daniel Wallach & James W. Jones & Cynthia Rosenzweig & Pramod K. Aggarw, 2016. "Similar estimates of temperature impacts on global wheat yield by three independent methods," Nature Climate Change, Nature, vol. 6(12), pages 1130-1136, December.
    3. Hafiz Ghulam Muhu-Din Ahmed & Muhammad Sajjad & Mingju Li & Muhammad Abubakkar Azmat & Muhammad Rizwan & Rana Haroon Maqsood & Sultan Habibullah Khan, 2019. "Selection Criteria for Drought-Tolerant Bread Wheat Genotypes at Seedling Stage," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sansar Sahani & Sandesh Shrestha & Tilak Ram Bhusal & Nabaraj dwadi & Rajesh Kumar Gupta & Prabin Sharma & Chetan Khanal & Mukti Ram Poudel, 2021. "Effect of Drought on Wheat in Nepal," Reviews in Food and Agriculture (RFNA), Zibeline International Publishing, vol. 2(2), pages 73-75, May.
    2. repec:zib:zbppsc:v:1:y:2021:i:1:p:4-7 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gizie Abeje Belay & Zhengbin Zhang & Ping Xu, 2021. "Physio-Morphological and Biochemical Trait-Based Evaluation of Ethiopian and Chinese Wheat Germplasm for Drought Tolerance at the Seedling Stage," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    2. Tuchapong Suwongsa & Kongpol Areerak & Kongpan Areerak & Jakkrit Pakdeeto, 2021. "Energy Saving Approach for an Electric Pump Using a Fuzzy Controller," Energies, MDPI, vol. 14(11), pages 1-14, June.
    3. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    4. Hafiz Ghulam Muhu-Din Ahmed & Muhammad Sajjad & Yawen Zeng & Muhammad Iqbal & Sultan Habibullah Khan & Aziz Ullah & Malik Nadeem Akhtar, 2020. "Genome-Wide Association Mapping through 90K SNP Array for Quality and Yield Attributes in Bread Wheat against Water-Deficit Conditions," Agriculture, MDPI, vol. 10(9), pages 1-23, September.
    5. Krishna Ghimire & Isabel McIntyre & Melanie Caffe, 2024. "Evaluation of Morpho-Physiological Traits of Oat ( Avena sativa L.) under Drought Stress," Agriculture, MDPI, vol. 14(1), pages 1-21, January.
    6. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    7. Markhof,Yannick Valentin & Ponzini,Giulia & Wollburg,Philip Randolph, 2022. "Measuring Disaster Crop Production Losses Using Survey Microdata : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9968, The World Bank.
    8. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    9. Alireza Pour-Aboughadareh & Reza Mohammadi & Alireza Etminan & Lia Shooshtari & Neda Maleki-Tabrizi & Peter Poczai, 2020. "Effects of Drought Stress on Some Agronomic and Morpho-Physiological Traits in Durum Wheat Genotypes," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    10. He, Liuyue & Xue, Jingyuan & Wang, Sufen, 2023. "WHCrop: A novel water-heat driven crop model for estimating the spatiotemporal dynamics of crop growth for arid region," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Yuzhao Ma & Naikun Kuang & Shengzhe Hong & Fengli Jiao & Changyuan Liu & Quanqi Li, 2021. "Water productivity of two wheat genotypes in response to no-tillage in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(4), pages 236-244.
    12. van Zelm, Rosalie & van der Velde, Marijn & Balkovic, Juraj & Čengić, Mirza & Elshout, Pieter M.F. & Koellner, Thomas & Núñez, Montserrat & Obersteiner, Michael & Schmid, Erwin & Huijbregts, Mark , 2018. "Spatially explicit life cycle impact assessment for soil erosion from global crop production," Ecosystem Services, Elsevier, vol. 30(PB), pages 220-227.
    13. Tianyi Zhang & Yong He & Ron DePauw & Zhenong Jin & David Garvin & Xu Yue & Weston Anderson & Tao Li & Xin Dong & Tao Zhang & Xiaoguang Yang, 2022. "Climate change may outpace current wheat breeding yield improvements in North America," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Baldos, Uris Lantz & Hertel, Thomas & Moore, Frances, 2018. "The Biophysical and Economic Geographies of Global Climate Impacts on Agriculture," Conference papers 333008, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Vengai Mbanyele & Florence Mtambanengwe & Hatirarami Nezomba & Jairos Rurinda & Paul Mapfumo, 2022. "Conservation Agriculture in Semi-Arid Zimbabwe: A Promising Practice to Improve Finger Millet ( Eleusine coracana Gaertn.) Productivity and Soil Water Availability in the Short Term," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    17. Bao, Yawen & Hoogenboom, Gerrit & McClendon, Ron & Vellidis, George, 2017. "A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data," Agricultural Systems, Elsevier, vol. 150(C), pages 109-119.
    18. Junjun Cao & Guoyong Leng & Peng Yang & Qingbo Zhou & Wenbin Wu, 2022. "Variability in Crop Response to Spatiotemporal Variation in Climate in China, 1980–2014," Land, MDPI, vol. 11(8), pages 1-13, July.
    19. Anjana Dhakal & Chanda Adhikari & Deepika Manandhar & Samikshya Bhattarai & Sony Shrestha, 2021. "Effect of Abiotic Stress in Wheat: A Review," Reviews in Food and Agriculture (RFNA), Zibeline International Publishing, vol. 2(2), pages 69-72, May.
    20. Lewis, Janet M & Reynolds, Matthew, 2022. "The Future of Climate Resilience in Wheat," SocArXiv hvd4e, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbmjsa:v:5:y:2021:i:2:p:67-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://myjsustainagri.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.