IDEAS home Printed from https://ideas.repec.org/a/zib/zbjwbm/v4y2022i1p32-40.html
   My bibliography  Save this article

Environmental, Social And Economic Impacts Of ‘Briquetting Plant And Briquettes'

Author

Listed:
  • Mamta Kumari

    (Subject Matter Specialist (SMS), KVK, Junagadh Agricultural University, Pipalia, Rajkot, Gujarat-360410, India)

  • Jagdeep Singh

    (Senior Consultant and Director, Recap Consultancy LLP, Varanasi, U.P.-221007, India)

Abstract

Brick Kilns and crop residue firing are the two common sources of air, water, and soil pollution in rural India. Brick kilns emit huge carbon monoxide (CO), carbon dioxide (CO2), sulphur dioxide (SO2), nitrogen dioxide (NO2), black carbon, particulate matter (PM) while crop residue firing resulting in heat penetration of 1 cm into the soil and temperature elevations of up to 33.8-42.2 °C which kills the bacterial and fungal populations critical for fertile soil. These substances & harmful gases contribute to the greenhouse effect and global warming. The aim of this study was to understand environmental, social and economic impacts of ‘briquetting plant & briquettes’. The results show that crop residue conversion into briquettes and use of these briquettes into brick kilns helped to reduce the carbon footprint and other harmful greenhouse gases by reducing CO2 emissions by 8.22 million kg, CO emissions by 0.34 million kg, NOx emissions by 0.028 million kg, SO2 emissions by 0.007 million kg, and particulate matter emissions by 0.065 million kg. It has also increased the farmer’s average income by 11.81%, briquette manufacturers earned 35% net profit, the brick kiln reduced labor costs by 13%, increased brick production by 8%, and overall earnings of brick kiln increased by 18%.

Suggested Citation

  • Mamta Kumari & Jagdeep Singh, 2022. "Environmental, Social And Economic Impacts Of ‘Briquetting Plant And Briquettes'," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 32-40, May.
  • Handle: RePEc:zib:zbjwbm:v:4:y:2022:i:1:p:32-40
    DOI: 10.26480/jwbm.01.2022.32.40
    as

    Download full text from publisher

    File URL: https://jwbm.com.my/archives/1jwbm2022/1jwbm2022-32-40.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jwbm.01.2022.32.40?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    2. Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
    3. Basu, Prabir & Butler, James & Leon, Mathias A., 2011. "Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants," Renewable Energy, Elsevier, vol. 36(1), pages 282-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    2. Juan Marquez Gomez & Marley Vanegas Chamorro & Daniel Mendoza Caceres, 2022. "Trends in Research Focused on Hydrogen Production Based on the Web of Science," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 117-121, July.
    3. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    4. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    5. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    6. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    7. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    8. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    10. Wang, Jianda & Dong, Kangyin & Sha, Yezhou & Yan, Cheng, 2022. "Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    11. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    12. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    13. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    15. Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
    16. Zhou, Yuguang & Zhang, Zongxi & Zhang, Yixiang & Wang, Yungang & Yu, Yang & Ji, Fang & Ahmad, Riaz & Dong, Renjie, 2016. "A comprehensive review on densified solid biofuel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1412-1428.
    17. Weiland, Brandon & Sesmero, Juan Pablo & Preckel, Paul & Wetzstein, Michael E., 2017. "Can Wood Pellets Save Coal?," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258250, Agricultural and Applied Economics Association.
    18. Nunzia Esercizio & Mariamichela Lanzilli & Marco Vastano & Simone Landi & Zhaohui Xu & Carmela Gallo & Genoveffa Nuzzo & Emiliano Manzo & Angelo Fontana & Giuliana d’Ippolito, 2021. "Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae," Resources, MDPI, vol. 10(4), pages 1-26, April.
    19. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbjwbm:v:4:y:2022:i:1:p:32-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://jwbm.com.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.