IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v04y2013i04ns2010007813400137.html
   My bibliography  Save this article

A Cross-Model Comparison Of Global Long-Term Technology Diffusion Under A 2°C Climate Change Control Target

Author

Listed:
  • B. C. C. VAN DER ZWAAN

    (Energy Research Centre of the Netherlands (ECN), Policy Studies, Radarweg 60, 1043 NT, Amsterdam, The Netherlands;
    Columbia University, Earth Institute, Lenfest Center for Sustainable Energy, 500 West 120th Street, New York, NY 10027, USA;
    Johns Hopkins University, School of Advanced International Studies, via Belmeloro 11, 40126 Bologna, Italy)

  • H. RÖSLER

    (Energy Research Centre of the Netherlands (ECN), Policy Studies, Radarweg 60, 1043 NT, Amsterdam, The Netherlands)

  • T. KOBER

    (Energy Research Centre of the Netherlands (ECN), Policy Studies, Radarweg 60, 1043 NT, Amsterdam, The Netherlands)

  • T. ABOUMAHBOUB

    (Potsdam Institute for Climate Impact Research (PIK), 14473, Potsdam, Germany)

  • K. V. CALVIN

    (Pacific Northwest National Laboratory (PNNL), Joint Global Change Research Institute, 5825 University Research Court, College Park, MD 20740, USA)

  • D. E. H. J. GERNAAT

    (Utrecht University, Copernicus Institute of Sustainable Development, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands)

  • G. MARANGONI

    (Fondazione Eni Enrico Mattei (FEEM), Corso Magenta 63, 20123 Milan, Italy)

  • D. McCOLLUM

    (International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria)

Abstract

We investigate the long-term global energy technology diffusion patterns required to reach a stringent climate change target with a maximum average atmospheric temperature increase of 2°C. If the anthropogenic temperature increase is to be limited to 2°C, totalCO2emissions have to be reduced massively, so as to reach substantial negative values during the second half of the century. Particularly power sectorCO2emissions should become negative from around 2050 onwards according to most models used for this analysis in order to compensate for GHG emissions in other sectors where abatement is more costly. The annual additional capacity deployment intensity (expressed in GW/yr) for solar and wind energy until 2030 needs to be around that recently observed for coal-based power plants, and will have to be several times higher in the period 2030–2050. Relatively high agreement exists across models in terms of the aggregated low-carbon energy system cost requirements on the supply side until 2050, which amount to about 50 trillion US$.

Suggested Citation

  • B. C. C. VAN DER ZWAAN & H. RÖSLER & T. KOBER & T. ABOUMAHBOUB & K. V. CALVIN & D. E. H. J. GERNAAT & G. MARANGONI & D. McCOLLUM, 2013. "A Cross-Model Comparison Of Global Long-Term Technology Diffusion Under A 2°C Climate Change Control Target," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-24.
  • Handle: RePEc:wsi:ccexxx:v:04:y:2013:i:04:n:s2010007813400137
    DOI: 10.1142/S2010007813400137
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007813400137
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007813400137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    2. Unknown, 2013. "JAAE Manuscript Submission Guidelines," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 45, pages 1-2, August.
    3. Bosetti, Valentina & De Cian, Enrica & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Sustainable Development Papers 55284, Fondazione Eni Enrico Mattei (FEEM).
    4. Rachel E. S. Ziemba & William T. Ziemba, 2013. "The January Barometer," World Scientific Book Chapters, in: Investing in the Modern Age, chapter 16, pages 191-203, World Scientific Publishing Co. Pte. Ltd..
    5. Unknown, 2013. "JARE Editors’ Report," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 38(3), pages 1-5.
    6. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    7. -, 2011. "The economics of climate change in the Caribbean," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38620, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. Ocde, 2013. "Documents et textes juridiques," Bulletin de droit nucléaire, Éditions OCDE, vol. 2012(2), pages 179-274.
    9. Unknown, 2013. "JAAE backmatter," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 45(2), pages 1-2, May.
    10. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    11. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    12. ., 2013. "A trajectory of legal tricks (hiyal)," Chapters, in: What is Wrong with Islamic Economics?, chapter 20, pages 337-401, Edward Elgar Publishing.
    13. van Damme, E.E.C., 2013. "Deugdelijke economen," Other publications TiSEM 15ce252a-21e4-411e-9702-4, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Şahan, Duygu & Tuna, Okan, 2018. "Environmental innovation of transportation sector in OECD countries," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), The Road to a Digitalized Supply Chain Management: Smart and Digital Solutions for Supply Chain Management. Proceedings of the Hamburg International C, volume 25, pages 157-170, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Gross, Robert & Hanna, Richard & Gambhir, Ajay & Heptonstall, Philip & Speirs, Jamie, 2018. "How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technolo," Energy Policy, Elsevier, vol. 123(C), pages 682-699.
    3. Vinca, Adriano & Rottoli, Marianna & Marangoni, Giacomo & Tavoni, Massimo, 2017. "The Role of Carbon Capture and Storage Electricity in Attaining 1.5 and 2°C," MITP: Mitigation, Innovation and Transformation Pathways 266285, Fondazione Eni Enrico Mattei (FEEM).
    4. Arango-Aramburo, Santiago & Turner, Sean W.D. & Daenzer, Kathryn & Ríos-Ocampo, Juan Pablo & Hejazi, Mohamad I. & Kober, Tom & Álvarez-Espinosa, Andrés C. & Romero-Otalora, Germán D. & van der Zwaan, , 2019. "Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways," Energy Policy, Elsevier, vol. 128(C), pages 179-188.
    5. van der Zwaan, Bob & Kober, Tom & Longa, Francesco Dalla & van der Laan, Anouk & Jan Kramer, Gert, 2018. "An integrated assessment of pathways for low-carbon development in Africa," Energy Policy, Elsevier, vol. 117(C), pages 387-395.
    6. Zheng, Jiali & Duan, Hongbo & Zhou, Sheng & Wang, Shouyang & Gao, Ji & Jiang, Kejun & Gao, Shuo, 2021. "Limiting global warming to below 1.5 °C from 2 °C: An energy-system-based multi-model analysis for China," Energy Economics, Elsevier, vol. 100(C).
    7. Köberle, Alexandre C. & Garaffa, Rafael & Cunha, Bruno S.L. & Rochedo, Pedro & Lucena, André F.P. & Szklo, Alexandre & Schaeffer, Roberto, 2018. "Are conventional energy megaprojects competitive? Suboptimal decisions related to cost overruns in Brazil," Energy Policy, Elsevier, vol. 122(C), pages 689-700.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Kober & B. C. C. Van Der Zwaan & H. Rösler, 2014. "Emission Certificate Trade And Costs Under Regional Burden-Sharing Regimes For A 2°C Climate Change Control Target," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-32.
    2. KATHERINE CALVIN & MARSHALL WISE & DAVID KLEIN & DAVID McCOLLUM & MASSIMO TAVONI & BOB VAN DER ZWAAN & DETLEF P. VAN VUUREN, 2013. "A Multi-Model Analysis Of The Regional And Sectoral Roles Of Bioenergy In Near- And Long-Termco2emissions Reduction," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-32.
    3. Marc S. Paolella, 2014. "Fast Methods For Large-Scale Non-Elliptical Portfolio Optimization," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-32.
    4. Jie Xu & Edward Huang & Chun-Hung Chen & Loo Hay Lee, 2015. "Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing and Big Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-34.
    5. Nagaratnam Jeyasreedharan & David E Allen & Joey Wenling Yang, 2014. "Yet Another Acd Model: The Autoregressive Conditional Directional Duration (Acdd) Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-20.
    6. Tien V. Do & Patrick Wüchner & Tamás Bérczes & János Sztrik & Hermann De Meer, 2014. "A New Finite-Source Queueing Model For Mobile Cellular Networks Applying Spectrum Renting," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-19.
    7. Carrara, Samuel & Marangoni, Giacomo, 2017. "Including system integration of variable renewable energies in a constant elasticity of substitution framework: The case of the WITCH model," Energy Economics, Elsevier, vol. 64(C), pages 612-626.
    8. R. S. Samian & A. Abbassi & J. Ghazanfarian, 2014. "Transient conduction simulation of a nano-scale hotspot using finite volume lattice Boltzmann method," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(04), pages 1-15.
    9. Lucas, Paul L. & Nielsen, Jens & Calvin, Katherine & L. McCollum, David & Marangoni, Giacomo & Strefler, Jessica & van der Zwaan, Bob C.C. & van Vuuren, Detlef P., 2015. "Future energy system challenges for Africa: Insights from Integrated Assessment Models," Energy Policy, Elsevier, vol. 86(C), pages 705-717.
    10. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    11. Lauri, Pekka & Forsell, Nicklas & Korosuo, Anu & Havlík, Petr & Obersteiner, Michael & Nordin, Annika, 2017. "Impact of the 2°C target on global woody biomass use," Forest Policy and Economics, Elsevier, vol. 83(C), pages 121-130.
    12. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    13. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
    14. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    15. Krey, Volker & Guo, Fei & Kolp, Peter & Zhou, Wenji & Schaeffer, Roberto & Awasthy, Aayushi & Bertram, Christoph & de Boer, Harmen-Sytze & Fragkos, Panagiotis & Fujimori, Shinichiro & He, Chenmin & Iy, 2019. "Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models," Energy, Elsevier, vol. 172(C), pages 1254-1267.
    16. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    17. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    18. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    19. Valentina Bosetti & Jeffrey A. Frankel, 2009. "Global Climate Policy Architecture and Political Feasibility: Specific Formulas and Emission Targets to Attain 460 ppm CO2 Concentrations," NBER Working Papers 15516, National Bureau of Economic Research, Inc.
    20. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:04:y:2013:i:04:n:s2010007813400137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.