IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i11p2443-2456.html
   My bibliography  Save this article

How to Integrate Labor Disruption into an Economic Impact Evaluation Model for Postdisaster Recovery Periods

Author

Listed:
  • Zhengtao Zhang
  • Ning Li
  • Peng Cui
  • Hong Xu
  • Yuan Liu
  • Xi Chen
  • Jieling Feng

Abstract

Evaluating the economic impacts caused by capital destruction is an effective method for disaster management and prevention, but the magnitude of the economic impact of labor disruption on an economic system remains unclear. This article emphasizes the importance of considering labor disruption when evaluating the economic impact of natural disasters. Based on the principle of disasters and resilience theory, our model integrates nonlinear recovery of labor losses and the demand of labor from outside the disaster area into the dynamic evaluation of the economic impact in the postdisaster recovery period. We exemplify this through a case study: the flood disaster that occurred in Wuhan city, China, on July 6, 2016 (the “7.6 Wuhan flood disaster”). The results indicate that (i) the indirect economic impacts of the “7.6 Wuhan flood disaster” will underestimate 15.12% if we do not consider labor disruption; (ii) the economic impact in secondary industry caused by insufficient labor forces accounts for 42.27% of its total impact, while that in the tertiary industry is 36.29%, which can cause enormous losses if both industries suffer shocks; and (iii) the agricultural sector of Wuhan city experiences an increase in output demand of 0.07% that is created by the introduction of 50,000 short‐term laborers from outside the disaster area to meet the postdisaster reconstruction need. These results provide evidence for the important role of labor disruption and prove that it is a nonnegligible component of postdisaster economic recovery and postdisaster reduction.

Suggested Citation

  • Zhengtao Zhang & Ning Li & Peng Cui & Hong Xu & Yuan Liu & Xi Chen & Jieling Feng, 2019. "How to Integrate Labor Disruption into an Economic Impact Evaluation Model for Postdisaster Recovery Periods," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2443-2456, November.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:11:p:2443-2456
    DOI: 10.1111/risa.13365
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13365
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elco E. Koks & Mark Thissen, 2016. "A Multiregional Impact Assessment Model for disaster analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(4), pages 429-449, October.
    2. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    3. Hirokazu Tatano & Satoshi Tsuchiya, 2008. "A framework for economic loss estimation due to seismic transportation network disruption: a spatial computable general equilibrium approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(2), pages 253-265, February.
    4. Sebastiaan N. Jonkman & Bob Maaskant & Ezra Boyd & Marc Lloyd Levitan, 2009. "Loss of Life Caused by the Flooding of New Orleans After Hurricane Katrina: Analysis of the Relationship Between Flood Characteristics and Mortality," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 676-698, May.
    5. Wei Xie & Adam Rose & Shantong Li & Jianwu He & Ning Li & Tariq Ali, 2018. "Dynamic Economic Resilience and Economic Recovery from Disasters: A Quantitative Assessment," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1306-1318, June.
    6. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    7. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 83-116.
    8. Yafei Wang, 2017. "An industrial ecology virtual framework for policy making in China," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 252-274, April.
    9. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    10. Jidong Wu & Ning Li & Stéphane Hallegatte & Peijun Shi & Aijun Hu & Xueqin Liu, 2012. "Regional indirect economic impact evaluation of the 2008 Wenchuan Earthquake," Post-Print hal-00716669, HAL.
    11. Jun Li & Douglas Crawford‐Brown & Mark Syddall & Dabo Guan, 2013. "Modeling Imbalanced Economic Recovery Following a Natural Disaster Using Input‐Output Analysis," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1908-1923, October.
    12. Yasuhide Okuyama, 2007. "Economic Modeling for Disaster Impact Analysis: Past, Present, and Future," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 115-124.
    13. Carvalho, Ariovaldo Lopes de & Antunes, Carlos Henggeler & Freire, Fausto & Henriques, Carla Oliveira, 2015. "A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil," Energy, Elsevier, vol. 82(C), pages 769-785.
    14. WU, Jidong & LI, Ning & SHI, Peijun, 2014. "Benchmark wealth capital stock estimations across China's 344 prefectures: 1978 to 2012," China Economic Review, Elsevier, vol. 31(C), pages 288-302.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    3. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    4. Xi Hu & Raghav Pant & Jim W. Hall & Swenja Surminski & Jiashun Huang, 2019. "Multi-Scale Assessment of the Economic Impacts of Flooding: Evidence from Firm to Macro-Level Analysis in the Chinese Manufacturing Sector," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    5. David Mendoza‐Tinoco & Yixin Hu & Zhao Zeng & Konstantinos J. Chalvatzis & Ning Zhang & Albert E. Steenge & Dabo Guan, 2020. "Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1612-1631, August.
    6. Yanfang Lyu & Yun Xiang & Dong Wang, 2023. "Evaluating Indirect Economic Losses from Flooding Using Input–Output Analysis: An Application to China’s Jiangxi Province," IJERPH, MDPI, vol. 20(5), pages 1-17, March.
    7. Hu, Xi & Pant, Raghav & Hall, Jim W. & Surminski, Swenja & Huang, Jiashun, 2019. "Multi-scale assessment of the economic impacts of flooding: evidence from firm to macro-level analysis in the Chinese manufacturing sector," LSE Research Online Documents on Economics 100534, London School of Economics and Political Science, LSE Library.
    8. J. A. León & M. Ordaz & E. Haddad & I. F. Araújo, 2022. "Risk caused by the propagation of earthquake losses through the economy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    10. Jing-Li Fan & Qiao-Mei Liang & Xiao-Jie Liang & Hirokazu Tatano & Yoshio Kajitani & Yi-Ming Wei, 2014. "National vulnerability to extreme climatic events: the cases of electricity disruption in China and Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1937-1956, April.
    11. Davide Antonioli & Alberto Marzucchi & Marco Modica, 2022. "Resilience, Performance and Strategies in Firms’ Reactions to the Direct and Indirect Effects of a Natural Disaster," Networks and Spatial Economics, Springer, vol. 22(3), pages 541-565, September.
    12. Zhengtao Zhang & Ning Li & Hong Xu & Jieling Feng & Xi Chen & Chao Gao & Peng Zhang, 2019. "Allocating assistance after a catastrophe based on the dynamic assessment of indirect economic losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 17-37, October.
    13. Wei Xie & Adam Rose & Shantong Li & Jianwu He & Ning Li & Tariq Ali, 2018. "Dynamic Economic Resilience and Economic Recovery from Disasters: A Quantitative Assessment," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1306-1318, June.
    14. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    15. Yoshio Kajitani & Hirokazu Tatano, 2018. "Applicability of a spatial computable general equilibrium model to assess the short-term economic impact of natural disasters," Economic Systems Research, Taylor & Francis Journals, vol. 30(3), pages 289-312, July.
    16. Hiroaki Ishiwata & Muneta Yokomatsu, 2018. "Dynamic Stochastic Macroeconomic Model of Disaster Risk Reduction Investment in Developing Countries," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2424-2440, November.
    17. Andre F. T. Avelino & Sandy Dall'erba, 2019. "Comparing the Economic Impact of Natural Disasters Generated by Different Input–Output Models: An Application to the 2007 Chehalis River Flood (WA)," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 85-104, January.
    18. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    19. Hiroyuki Shibusawa & Daichi Matsushima, 2022. "Assessing the economic impact of tsunami and nuclear power plant disasters in Shizuoka, Japan: a dynamic inter-regional input–output (IRIO) approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 307-333, February.
    20. Dormady, Noah C. & Rose, Adam & Roa-Henriquez, Alfredo & Morin, C. Blain, 2022. "The cost-effectiveness of economic resilience," International Journal of Production Economics, Elsevier, vol. 244(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:11:p:2443-2456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.