IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i2p255-271.html
   My bibliography  Save this article

Dynamic Blowout Risk Analysis Using Loss Functions

Author

Listed:
  • Majeed Abimbola
  • Faisal Khan

Abstract

Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real‐time risk analysis. The real‐time evolving situation is considered dependent on the changing bottom‐hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout.

Suggested Citation

  • Majeed Abimbola & Faisal Khan, 2018. "Dynamic Blowout Risk Analysis Using Loss Functions," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 255-271, February.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:2:p:255-271
    DOI: 10.1111/risa.12879
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12879
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aven, Terje, 2010. "On how to define, understand and describe risk," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 623-631.
    2. Cohen, Mark A. & Gottlieb, Madeline & Linn, Joshua & Richardson, Nathan, 2011. "Deepwater Drilling: Law, Policy, and Economics of Firm Organization and Safety," RFF Working Paper Series dp-10-65, Resources for the Future.
    3. Skogdalen, Jon Espen & Vinnem, Jan Erik, 2012. "Combining precursor incidents investigations and QRA in oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 48-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xuan & Meng, Huixing & An, Xu & Xing, Jinduo, 2024. "Integration of functional resonance analysis method and reinforcement learning for updating and optimizing emergency procedures in variable environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Wen Li & Yicheng Ye & Nanyan Hu & Xianhua Wang & Qihu Wang, 2019. "Real-Time Warning and Risk Assessment of Tailings Dam Disaster Status Based on Dynamic Hierarchy-Grey Relation Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krupnick, Alan & Campbell, Sarah & Cohen, Mark A. & Parry, Ian W.H., 2011. "Understanding the Costs and Benefits of Deepwater Oil Drilling Regulation," RFF Working Paper Series dp-10-62, Resources for the Future.
    2. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    3. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
    4. Terje Aven & Ortwin Renn, 2015. "An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 701-712, April.
    5. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    6. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    8. van Winsen, Frankwin & de Mey, Yann & Lauwers, Ludwig & Van Passel, Steven & Vancauteren, Mark & Wauters, Erwin, 2013. "Cognitive mapping: A method to elucidate and present farmers’ risk perception," Agricultural Systems, Elsevier, vol. 122(C), pages 42-52.
    9. Lucija Muehlenbachs & Stefan Staubli & Mark A. Cohen, 2016. "The Impact of Team Inspections on Enforcement and Deterrence," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 159-204.
    10. Shanti Gamper-Rabindran & Stephen Finger, 2013. "Does industry self-regulation reduce pollution? Responsible Care in the chemical industry," Journal of Regulatory Economics, Springer, vol. 43(1), pages 1-30, January.
    11. Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    13. Inger Lise Johansen & Marvin Rausand, 2014. "Defining complexity for risk assessment of sociotechnical systems: A conceptual framework," Journal of Risk and Reliability, , vol. 228(3), pages 272-290, June.
    14. Abrahamsen, Eirik Bjorheim & Abrahamsen, Håkon Bjorheim & Milazzo, Maria Francesca & Selvik, Jon Tømmerås, 2018. "Using the ALARP principle for safety management in the energy production sector of chemical industry," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 160-165.
    15. Gianluca Pescaroli & David Alexander, 2018. "Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2245-2257, November.
    16. Aven, Terje, 2011. "On the new ISO guide on risk management terminology," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 719-726.
    17. Kuwayama, Yusuke & Roeshot, Skyler & Krupnick, Alan & Richardson, Nathan & Mares, Jan, 2017. "Risks and mitigation options for on-site storage of wastewater from shale gas and tight oil development," Energy Policy, Elsevier, vol. 101(C), pages 582-593.
    18. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    19. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    20. J Montewka & P Krata & F Goerlandt & A Mazaheri & P Kujala, 2011. "Marine traffic risk modelling – an innovative approach and a case study," Journal of Risk and Reliability, , vol. 225(3), pages 307-322, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:2:p:255-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.