IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i9p1663-1673.html
   My bibliography  Save this article

Optimal Strategies for Interception, Detection, and Eradication in Plant Biosecurity

Author

Listed:
  • Sara Pasquali
  • Gianni Gilioli
  • Dirk Janssen
  • Stephan Winter

Abstract

The introduction of invasive species causes damages from the economic and ecological point of view. Interception of plant pests and eradication of the established populations are two management options to prevent or limit the risk posed by an invasive species. Management options generate costs related to the interception at the point of entry, and the detection and eradication of established field populations. Risk managers have to decide how to allocate resources between interception, field detection, containment, and eradication minimizing the expected total costs. In this work is considered an optimization problem aiming at determining the optimal allocation of resources to minimize the expected total costs of the introduction of Bemisia tabaci‐transmitted viruses in Europe. The optimization problem takes into account a probabilistic model for the estimation of the percentage of viruliferous insect populations arriving through the trade of commodities, and a population dynamics model describing the process of the vector populations' establishment and spread. The time of field detection of viruliferous insect populations is considered as a random variable. The solution of the optimization problem allows to determine the optimal allocation of the search effort between interception and detection/eradication. The behavior of the search effort as a function of efficacy or search in interception and in detection is then analyzed. The importance of the vector population growth rate and the probability of virus establishment are also considered in the analysis of the optimization problem.

Suggested Citation

  • Sara Pasquali & Gianni Gilioli & Dirk Janssen & Stephan Winter, 2015. "Optimal Strategies for Interception, Detection, and Eradication in Plant Biosecurity," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1663-1673, September.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:9:p:1663-1673
    DOI: 10.1111/risa.12278
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12278
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cacho, Oscar J. & Hester, Susan M., 2011. "Deriving efficient frontiers for effort allocation in the management of invasive species," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-18.
    2. Rout, Tracy M. & Moore, Joslin L. & Possingham, Hugh P. & McCarthy, Michael A., 2011. "Allocating biosecurity resources between preventing, detecting, and eradicating island invasions," Ecological Economics, Elsevier, vol. 71(C), pages 54-62.
    3. James Sanchirico & Heidi Albers & Carolyn Fischer & Conrad Coleman, 2010. "Spatial Management of Invasive Species: Pathways and Policy Options," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(4), pages 517-535, April.
    4. Mehta, Shefali V. & Haight, Robert G. & Homans, Frances R. & Polasky, Stephen & Venette, Robert C., 2007. "Optimal detection and control strategies for invasive species management," Ecological Economics, Elsevier, vol. 61(2-3), pages 237-245, March.
    5. Mark C. Andersen & Heather Adams & Bruce Hope & Mark Powell, 2004. "Risk Assessment for Invasive Species," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 787-793, August.
    6. Gilioli, G. & Pasquali, S. & Tramontini, S. & Riolo, F., 2013. "Modelling local and long-distance dispersal of invasive chestnut gall wasp in Europe," Ecological Modelling, Elsevier, vol. 263(C), pages 281-290.
    7. Homans, Frances & Horie, Tetsuya, 2011. "Optimal detection strategies for an established invasive pest," Ecological Economics, Elsevier, vol. 70(6), pages 1129-1138, April.
    8. Gilioli, Gianni & Pasquali, Sara, 2007. "Use of individual-based models for population parameters estimation," Ecological Modelling, Elsevier, vol. 200(1), pages 109-118.
    9. Oscar J. Cacho & Susan M. Hester, 2011. "Deriving efficient frontiers for effort allocation in the management of invasive species," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 72-89, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Greenberg & Anthony Cox & Vicki Bier & Jim Lambert & Karen Lowrie & Warner North & Michael Siegrist & Felicia Wu, 2020. "Risk Analysis: Celebrating the Accomplishments and Embracing Ongoing Challenges," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2113-2127, November.
    2. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    2. Carrasco, L. Roman & Cook, David & Baker, Richard & MacLeod, Alan & Knight, Jon D. & Mumford, John D., 2012. "Towards the integration of spread and economic impacts of biological invasions in a landscape of learning and imitating agents," Ecological Economics, Elsevier, vol. 76(C), pages 95-103.
    3. Martin Drechsler & Julia Touza & Piran White & Glyn Jones, 2016. "Agricultural landscape structure and invasive species: the cost-effective level of crop field clustering," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 111-121, February.
    4. Dalmazzone, Silvana & Giaccaria, Sergio, 2014. "Economic drivers of biological invasions: A worldwide, bio-geographic analysis," Ecological Economics, Elsevier, vol. 105(C), pages 154-165.
    5. Frank H. Koch & Denys Yemshanov & Daniel W. McKenney & William D. Smith, 2009. "Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1227-1241, September.
    6. Horie, Tetsuya & Haight, Robert G. & Homans, Frances R. & Venette, Robert C., 2013. "Optimal strategies for the surveillance and control of forest pathogens: A case study with oak wilt," Ecological Economics, Elsevier, vol. 86(C), pages 78-85.
    7. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    8. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    9. Jardine, Sunny L. & Sanchirico, James N., 2018. "Estimating the cost of invasive species control," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 242-257.
    10. Kim Meyer Hall & Heidi J. Albers & Majid Alkaee Taleghan & Thomas G. Dietterich, 2018. "Optimal Spatial-Dynamic Management of Stochastic Species Invasions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 403-427, June.
    11. Kompas, Tom & Chu, Long & McKirdy, Simon & Thomas, Melissa & Van Der Merwe, Johann, 2023. "Optimal post-border surveillance against invasive pests to protect a valuable nature reserve and island asset," Ecological Economics, Elsevier, vol. 208(C).
    12. Denys Yemshanov & Robert G Haight & Cuicui Chen & Ning Liu & Christian J K MacQuarrie & Frank H Koch & Robert Venette & Krista Ryall, 2019. "Managing biological invasions in urban environments with the acceptance sampling approach," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-28, August.
    13. Albers, Heidi J. & Fischer, Carolyn & Sanchirico, James N., 2010. "Invasive species management in a spatially heterogeneous world: Effects of uniform policies," Resource and Energy Economics, Elsevier, vol. 32(4), pages 483-499, November.
    14. Kompas, Tom & Chu, Long & Nguyen, Hoa Thi Minh, 2016. "A practical optimal surveillance policy for invasive weeds: An application to Hawkweed in Australia," Ecological Economics, Elsevier, vol. 130(C), pages 156-165.
    15. Yemshanov, Denys & Haight, Robert G. & Koch, Frank H. & Venette, Robert C. & Swystun, Tom & Fournier, Ronald E. & Marcotte, Mireille & Chen, Yongguang & Turgeon, Jean J., 2019. "Optimizing surveillance strategies for early detection of invasive alien species," Ecological Economics, Elsevier, vol. 162(C), pages 87-99.
    16. Tom Kompas & Pham Van Ha & Hoa-Thi-Minh Nguyen & Graeme Garner & Sharon Roche & Iain East, 2020. "Optimal surveillance against foot-and-mouth disease: A sample average approximation approach," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    17. Kompas, Tom & Ha, Pham Van & Nguyen, Hoa Thi Minh & East, Iain & Roche, Sharon & Garner, Graeme, 2017. "Optimal surveillance against foot-and-mouth disease: the case of bulk milk testing in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), October.
    18. Onal, Sevilay & Akhundov, Najmaddin & Büyüktahtakın, İ. Esra & Smith, Jennifer & Houseman, Gregory R., 2020. "An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader," International Journal of Production Economics, Elsevier, vol. 222(C).
    19. Eyyüb Y. Kıbış & İ. Esra Büyüktahtakın & Robert G. Haight & Najmaddin Akhundov & Kathleen Knight & Charles E. Flower, 2021. "A Multistage Stochastic Programming Approach to the Optimal Surveillance and Control of the Emerald Ash Borer in Cities," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 808-834, May.
    20. Charles Sims & David Finnoff & Jason F. Shogren, 2018. "Taking One for the Team: Is Collective Action More Responsive to Ecological Change?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 589-615, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:9:p:1663-1673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.