IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v27y2007i6p1497-1517.html
   My bibliography  Save this article

Hurricane Destructive Power Predictions Based on Historical Storm and Sea Surface Temperature Data

Author

Listed:
  • Kenneth T. Bogen
  • Edwin D. Jones
  • Larry E. Fischer

Abstract

Forecasting destructive hurricane potential is complicated by substantial, unexplained intraannual variation in storm‐specific power dissipation index (PDI, or integrated third power of wind speed), and interannual variation in annual accumulated PDI (APDI). A growing controversy concerns the recent hypothesis that the clearly positive trend in North Atlantic Ocean (NAO) sea surface temperature (SST) since 1970 explains increased hurricane intensities over this period, and so implies ominous PDI and APDI growth as global warming continues. To test this “SST hypothesis” and examine its quantitative implications, a combination of statistical and probabilistic methods were applied to National Hurricane Center HURDAT best‐track data on NAO hurricanes during 1880–2002, and corresponding National Oceanographic and Atmospheric Administration Extended Reconstruction SST estimates. Notably, hurricane behavior was compared to corresponding hurricane‐specific (i.e., spatiotemporally linked) SST; previous similar comparisons considered only SST averaged over large NAO regions. Contrary to the SST hypothesis, SST was found to vary in a monthly pattern inconsistent with that of corresponding PDI, and to be at best weakly associated with PDI or APDI despite strong correlation with corresponding mean latitude (R2= 0.55) or with combined mean location and a ∼90‐year periodic trend (R2= 0.70). Over the last century, the lower 75% of APDIs appear randomly sampled from a nearly uniform distribution, and the upper 25% of APDIs from a nearly lognormal distribution. From the latter distribution, a baseline (SST‐independent) stochastic model was derived predicting that over the next half century, APDI will not likely exceed its maximum value over the last half century by more than a factor of 1.5. This factor increased to 2 using a baseline model modified to assume SST‐dependence conditioned on an upper bound of the increasing NAO SST trend observed since 1970. An additional model was developed that predicts PDI statistics conditional on APDI. These PDI and APDI models can be used to estimate upper bounds on indices of hurricane power likely to be realized over the next century, under divergent assumptions regarding SST influence.

Suggested Citation

  • Kenneth T. Bogen & Edwin D. Jones & Larry E. Fischer, 2007. "Hurricane Destructive Power Predictions Based on Historical Storm and Sea Surface Temperature Data," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1497-1517, December.
  • Handle: RePEc:wly:riskan:v:27:y:2007:i:6:p:1497-1517
    DOI: 10.1111/j.1539-6924.2007.00984.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2007.00984.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2007.00984.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Stuart Coles & Luis Pericchi, 2003. "Anticipating catastrophes through extreme value modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 405-416, October.
    3. Jeong, Jinook & Chung, Seoung, 2001. "Bootstrap tests for autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 49-69, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    2. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    3. Brokovich, E. & Schwarz, A.M. & Oeta, J., 2012. "Building social and ecological resilience to climate change in Roviana, Solomon Islands: PASAP country activity for Solomon Islands: Brief review: climate change trends and projections for Solomon Isl," Monographs, The WorldFish Center, number 40178, April.
    4. Shibly Shahrier & Koji Kotani, 2016. "Labor Donation Or Money Donation? Pro-Sociality On Prevention Of Natural Disasters In A Case Of Cyclone Aila, Bangladesh," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(01), pages 1-26, March.
    5. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    6. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    7. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    8. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    9. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    10. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    11. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio -Empirical Evidence for a Developing Economy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242411, Verein für Socialpolitik / German Economic Association.
    12. D. Bala Subrahamanyam & Radhika Ramachandran & K. Nalini & Freddy P. Paul & S. Roshny, 2019. "Performance evaluation of COSMO numerical weather prediction model in prediction of OCKHI: one of the rarest very severe cyclonic storms over the Arabian Sea—a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 431-459, March.
    13. Leiwen Jiang & Karen Hardee, 2011. "How do Recent Population Trends Matter to Climate Change?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 287-312, April.
    14. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    15. Jerch, Rhiannon & Kahn, Matthew E. & Lin, Gary C., 2023. "Local public finance dynamics and hurricane shocks," Journal of Urban Economics, Elsevier, vol. 134(C).
    16. Geoffrey Heal & Howard Kunreuther, 2010. "Environment and Energy: Catastrophic Liabilities from Nuclear Power Plants," NBER Chapters, in: Measuring and Managing Federal Financial Risk, pages 235-257, National Bureau of Economic Research, Inc.
    17. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    18. Sally L. Lavender & Kevin J. E. Walsh & Steven Utembe & Louis-Philippe Caron & Mark Guishard, 2022. "Estimation of maximum seasonal tropical cyclone damage in the Atlantic using climate models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1025-1038, January.
    19. Asim Zia, 2012. "Land Use Adaptation to Climate Change: Economic Damages from Land-Falling Hurricanes in the Atlantic and Gulf States of the USA, 1900–2005," Sustainability, MDPI, vol. 4(5), pages 1-16, May.
    20. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:27:y:2007:i:6:p:1497-1517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.