IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v67y2020i8p705-724.html
   My bibliography  Save this article

Dynamic pricing and matching in ride‐hailing platforms

Author

Listed:
  • Chiwei Yan
  • Helin Zhu
  • Nikita Korolko
  • Dawn Woodard

Abstract

Ride‐hailing platforms such as Uber, Lyft, and DiDi have achieved explosive growth and reshaped urban transportation. The theory and technologies behind these platforms have become one of the most active research topics in the fields of economics, operations research, computer science, and transportation engineering. In particular, advanced matching and dynamic pricing (DP) algorithms—the two key levers in ride‐hailing—have received tremendous attention from the research community and are continuously being designed and implemented at industrial scales by ride‐hailing platforms. We provide a review of matching and DP techniques in ride‐hailing, and show that they are critical for providing an experience with low waiting time for both riders and drivers. Then we link the two levers together by studying a pool‐matching mechanism called dynamic waiting (DW) that varies rider waiting and walking before dispatch, which is inspired by a recent carpooling product Express Pool from Uber. We show using data from Uber that by jointly optimizing DP and DW, price variability can be mitigated, while increasing capacity utilization, trip throughput, and welfare. We also highlight several key practical challenges and directions of future research from a practitioner's perspective.

Suggested Citation

  • Chiwei Yan & Helin Zhu & Nikita Korolko & Dawn Woodard, 2020. "Dynamic pricing and matching in ride‐hailing platforms," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 705-724, December.
  • Handle: RePEc:wly:navres:v:67:y:2020:i:8:p:705-724
    DOI: 10.1002/nav.21872
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21872
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gérard P. Cachon & Kaitlin M. Daniels & Ruben Lobel, 2017. "The Role of Surge Pricing on a Service Platform with Self-Scheduling Capacity," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 368-384, July.
    2. Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
    3. Judd Cramer & Alan B. Krueger, 2016. "Disruptive Change in the Taxi Business: The Case of Uber," American Economic Review, American Economic Association, vol. 106(5), pages 177-182, May.
    4. repec:fth:prinin:455 is not listed on IDEAS
    5. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    6. Joshua D. Angrist & Sydnee Caldwell & Jonathan V. Hall, 2017. "Uber vs. Taxi: A Driver’s Eye View," NBER Working Papers 23891, National Bureau of Economic Research, Inc.
    7. Joshua Angrist & Alan Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Working Papers 834, Princeton University, Department of Economics, Industrial Relations Section..
    8. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    9. Peter Cohen & Robert Hahn & Jonathan Hall & Steven Levitt & Robert Metcalfe, 2016. "Using Big Data to Estimate Consumer Surplus: The Case of Uber," NBER Working Papers 22627, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikhil Garg & Hamid Nazerzadeh, 2022. "Driver Surge Pricing," Management Science, INFORMS, vol. 68(5), pages 3219-3235, May.
    2. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    3. Bahrami, Sina & Nourinejad, Mehdi & Yin, Yafeng & Wang, Hai, 2023. "The three-sided market of on-demand delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    4. Alex Chin & Zhiwei Qin, 2023. "A Unified Representation Framework for Rideshare Marketplace Equilibrium and Efficiency," Papers 2302.14358, arXiv.org.
    5. Ke, Jintao & Chen, Xiqun (Michael) & Yang, Hai & Li, Sen, 2022. "Coordinating supply and demand in ride-sourcing markets with pre-assigned pooling service and traffic congestion externality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    6. Zhou, Xizhen & Lv, Mengqi & Ji, Yanjie & Zhang, Shuichao & Liu, Yong, 2023. "Pricing curb parking: Differentiated parking fees or cash rewards?," Transport Policy, Elsevier, vol. 142(C), pages 46-58.
    7. Li, Xiaonan & Li, Xiangyong & Wang, Hai & Shi, Junxin & Aneja, Y.P., 2022. "Supply regulation under the exclusion policy in a ride-sourcing market," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 69-94.
    8. Zhan, Xingbin & Szeto, W.Y. & (Michael) Chen, Xiqun, 2022. "The dynamic ride-hailing sharing problem with multiple vehicle types and user classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    9. Zhang, Huili & Luo, Kelin & Xu, Yao & Xu, Yinfeng & Tong, Weitian, 2022. "Online crowdsourced truck delivery using historical information," European Journal of Operational Research, Elsevier, vol. 301(2), pages 486-501.
    10. Zhan, Xingbin & Szeto, W.Y. & (Michael) Chen, Xiqun, 2022. "A simulation–optimization framework for a dynamic electric ride-hailing sharing problem with a novel charging strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    11. Shi, Junxin & Li, Xiangyong & Aneja, Y.P. & Li, Xiaonan, 2023. "Ride-matching for the ride-hailing platform with heterogeneous drivers," Transport Policy, Elsevier, vol. 136(C), pages 169-192.
    12. Soppert, Matthias & Steinhardt, Claudius & Müller, Christian & Gönsch, Jochen & Bhogale, Prasanna M., 2023. "Matching functions for free-floating shared mobility system optimization to capture maximum walking distances," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1194-1214.
    13. Zhao, Meng & Li, Bin & Ren, Jiali & Hao, Zhihua, 2023. "Competition equilibrium of ride-sourcing platforms and optimal government subsidies considering customers’ green preference under peak carbon dioxide emissions," International Journal of Production Economics, Elsevier, vol. 255(C).
    14. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    15. Shetty, Akhil & Li, Sen & Tavafoghi, Hamidreza & Qin, Junjie & Poolla, Kameshwar & Varaiya, Pravin, 2022. "An analysis of labor regulations for transportation network companies," Economics of Transportation, Elsevier, vol. 32(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    2. Yongwook Paik & Christos A. Makridis, 2023. "The social value of a ridesharing platform: a hedonic pricing approach," Empirical Economics, Springer, vol. 64(5), pages 2125-2150, May.
    3. Sun, Hao & Wang, Hai & Wan, Zhixi, 2019. "Model and analysis of labor supply for ride-sharing platforms in the presence of sample self-selection and endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 76-93.
    4. Maximilian Schäfer & Kevin Ducbao Tran, 2020. "Airbnb, Hotels, and Localized Competition," Discussion Papers of DIW Berlin 1889, DIW Berlin, German Institute for Economic Research.
    5. Zhang, Kenan & Nie, Yu (Marco), 2021. "To pool or not to pool: Equilibrium, pricing and regulation," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 59-90.
    6. Kyung Sun (Melissa) Rhee & Jinyang Zheng & Youwei Wang & Yong Tan, 2023. "Value of Information Sharing via Ride-Hailing Apps: An Empirical Analysis," Information Systems Research, INFORMS, vol. 34(3), pages 1228-1244, September.
    7. Soheil Ghili, 2021. "Optimal Bundling: Characterization, Interpretation, and Implications for Empirical Work," Cowles Foundation Discussion Papers 2273, Cowles Foundation for Research in Economics, Yale University.
    8. Soheil Ghili & Vineet Kumar, 2020. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Cowles Foundation Discussion Papers 2219, Cowles Foundation for Research in Economics, Yale University.
    9. Soheil Ghili & Vineet Kumar, 2020. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Cowles Foundation Discussion Papers 2219R, Cowles Foundation for Research in Economics, Yale University, revised Aug 2020.
    10. Oksana Loginova & X. Henry Wang & Qihong Liu, 2022. "The impact of multi-homing in a ride-sharing market," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(1), pages 239-254, August.
    11. Ye, Fei & Ni, Debing & Li, Kevin W., 2021. "Competition between manufacturers and sharing economy platforms: An owner base and sharing utility perspective," International Journal of Production Economics, Elsevier, vol. 234(C).
    12. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    13. Yongwook Paik & Sukhun Kang & Robert Seamans, 2019. "Entrepreneurship, innovation, and political competition: How the public sector helps the sharing economy create value," Strategic Management Journal, Wiley Blackwell, vol. 40(4), pages 503-532, April.
    14. Soheil Ghili & Vineet Kumar, 2021. "Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing," Papers 2108.05954, arXiv.org.
    15. Mark Carlson & Kris James Mitchener, 2009. "Branch Banking as a Device for Discipline: Competition and Bank Survivorship during the Great Depression," Journal of Political Economy, University of Chicago Press, vol. 117(2), pages 165-210, April.
    16. Ilona Babenko & Benjamin Bennett & John M Bizjak & Jeffrey L Coles & Jason J Sandvik, 2023. "Clawback Provisions and Firm Risk," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 12(2), pages 191-239.
    17. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    18. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    19. KAMKOUM, Arnaud Cedric, 2023. "The Federal Reserve’s Response to the Global Financial Crisis and its Effects: An Interrupted Time-Series Analysis of the Impact of its Quantitative Easing Programs," Thesis Commons d7pvg, Center for Open Science.
    20. Wang, Xu & Zhang, Xiaobo & Xie, Zhuan & Huang, Yiping, 2016. "Roads to innovation: Firm-level evidence from China:," IFPRI discussion papers 1542, International Food Policy Research Institute (IFPRI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:67:y:2020:i:8:p:705-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.