IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v38y1991i3p413-430.html
   My bibliography  Save this article

Distance‐directed augmenting path algorithms for maximum flow and parametric maximum flow problems

Author

Listed:
  • Ravindra K. Ahuja
  • James B. Orlin

Abstract

Until recently, fast algorithms for the maximum flow problem have typically proceeded by constructing layered networks and establishing blocking flows in these networks. However, in recent years, new distance‐directed algorithms have been suggested that do not construct layered networks but instead maintain a distance label with each node. The distance label of a node is a lower bound on the length of the shortest augmenting path from the node to the sink. In this article we develop two distance‐directed augmenting path algorithms for the maximum flow problem. Both the algorithms run in O(n2m) time on networks with n nodes and m arcs. We also point out the relationship between the distance labels and layered networks. Using a scaling technique, we improve the complexity of our distance‐directed algorithms to O(nm log U), where U denotes the largest arc capacity. We also consider applications of these algorithms to unit capacity maximum flow problems and a class of parametric maximum flow problems.

Suggested Citation

  • Ravindra K. Ahuja & James B. Orlin, 1991. "Distance‐directed augmenting path algorithms for maximum flow and parametric maximum flow problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 413-430, June.
  • Handle: RePEc:wly:navres:v:38:y:1991:i:3:p:413-430
    DOI: 10.1002/1520-6750(199106)38:33.0.CO;2-J
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199106)38:33.0.CO;2-J
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199106)38:33.0.CO;2-J?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. K. Ahuja, 1986. "Algorithms for the minimax transportation problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(4), pages 725-739, November.
    2. R. K. Ahuja & James B. Orlin, 1989. "A Fast and Simple Algorithm for the Maximum Flow Problem," Operations Research, INFORMS, vol. 37(5), pages 748-759, October.
    3. Edward Minieka, 1972. "Parametric Network Flows," Operations Research, INFORMS, vol. 20(6), pages 1162-1170, December.
    4. James E. Kelley, 1961. "Critical-Path Planning and Scheduling: Mathematical Basis," Operations Research, INFORMS, vol. 9(3), pages 296-320, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Sedeño‐Noda & Carlos González‐Martín, 2000. "A O(nm log(U/n)) time maximum flow algorithm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(6), pages 511-520, September.
    2. Ahuja, Ravindra K. & Kodialam, Murali & Mishra, Ajay K. & Orlin, James B., 1997. "Computational investigations of maximum flow algorithms," European Journal of Operational Research, Elsevier, vol. 97(3), pages 509-542, March.
    3. Sedeño-Noda, A. & González-Dávila, E. & González-Martín, C. & González-Yanes, A., 2009. "Preemptive benchmarking problem: An approach for official statistics in small areas," European Journal of Operational Research, Elsevier, vol. 196(1), pages 360-369, July.
    4. A. Sedeño-Noda & M. González-Sierra & C. González-Martín, 2000. "An algorithmic study of the Maximum Flow problem: A comparative statistical analysis," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 135-162, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary R. Waissi, 1993. "A new polynomial algorithm for maximum value flow with an efficient parallel implementation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(3), pages 393-414, April.
    2. Byung-Cheon Choi & Changmuk Kang, 2019. "A linear time–cost tradeoff problem with multiple milestones under a comb graph," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 341-361, August.
    3. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Mehrnoosh Zohrehvandi & Shakib Zohrehvandi & Mohammad Khalilzadeh & Maghsoud Amiri & Fariborz Jolai & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene, 2024. "A Multi-Objective Mathematical Programming Model for Project-Scheduling Optimization Considering Customer Satisfaction in Construction Projects," Mathematics, MDPI, vol. 12(2), pages 1-16, January.
    5. Menipaz, Ehud & Ben-Yair, Avner, 2002. "Three-parametrical harmonization model in project management by means of simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(5), pages 431-436.
    6. A B Hafızoğlu & M Azizoğlu, 2010. "Linear programming based approaches for the discrete time/cost trade-off problem in project networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 676-685, April.
    7. Herroelen, Willy & Leus, Roel, 2004. "The construction of stable project baseline schedules," European Journal of Operational Research, Elsevier, vol. 156(3), pages 550-565, August.
    8. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    9. Xiaoyu Ji & Kai Yao, 2017. "Uncertain project scheduling problem with resource constraints," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 575-580, March.
    10. Laslo, Zohar & Keren, Baruch & Ilani, Hagai, 2008. "Minimizing task completion time with the execution set method," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1513-1519, June.
    11. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "A reliable framework for satellite networks achieving energy requirements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Chanas, Stefan & Zielinski, Pawel, 2002. "The computational complexity of the criticality problems in a network with interval activity times," European Journal of Operational Research, Elsevier, vol. 136(3), pages 541-550, February.
    13. Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "An Approach to Realizing Process Control for Underground Mining Operations of Mobile Machines," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    14. Hua Wang & Jon Dieringer & Steve Guntz & Shankarraman Vaidyaraman & Shekhar Viswanath & Nikolaos H. Lappas & Sal Garcia-Munoz & Chrysanthos E. Gounaris, 2021. "Portfolio-Wide Optimization of Pharmaceutical R&D Activities Using Mathematical Programming," Interfaces, INFORMS, vol. 51(4), pages 262-279, July.
    15. Prabhjot Kaur & Anuj Sharma & Vanita Verma & Kalpana Dahiya, 2022. "An alternate approach to solve two-level hierarchical time minimization transportation problem," 4OR, Springer, vol. 20(1), pages 23-61, March.
    16. Nicole Megow & Rolf H. Möhring & Jens Schulz, 2011. "Decision Support and Optimization in Shutdown and Turnaround Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 189-204, May.
    17. Hermans, Ben & Leus, Roel & Looy, Bart Van, 2023. "Deciding on scheduling, secrecy, and patenting during the new product development process: The relevance of project planning models," Omega, Elsevier, vol. 116(C).
    18. Jiao Wang & Kai Yang & Ruiqing Zhao, 2017. "The impact of decision criteria on deadline-based incentive contracts in project management," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 643-655, March.
    19. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2012. "Multi-resource allocation in stochastic project scheduling," Annals of Operations Research, Springer, vol. 193(1), pages 193-220, March.
    20. Wiley, Victor D. & Deckro, Richard F. & Jackson, Jack A., 1998. "Optimization analysis for design and planning of multi-project programs," European Journal of Operational Research, Elsevier, vol. 107(2), pages 492-506, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:38:y:1991:i:3:p:413-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.