IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i3p512-527.html
   My bibliography  Save this article

Block bootstrap prediction intervals for parsimonious first‐order vector autoregression

Author

Listed:
  • Jing Li

Abstract

This paper attempts to answer the question of whether the principle of parsimony can be applied to interval forecasting for multivariate series. Toward that end, this paper proposes the block bootstrap prediction intervals based on parsimonious first‐order vector autoregression. The new intervals generalize standard bootstrap prediction intervals by allowing for serially correlated prediction errors. The unexplained serial correlation is accounted for by the generalized multivariate block bootstrap, which resamples two‐dimensional arrays of residuals. Different methods of block bootstraps are compared. A Monte Carlo experiment shows that, in most cases, the new intervals from a parsimonious model outperform the standard bootstrap intervals from a complex model. The proposed block bootstrap prediction intervals are illustrated using financial data for interest rates and exchange rates.

Suggested Citation

  • Jing Li, 2021. "Block bootstrap prediction intervals for parsimonious first‐order vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 512-527, April.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:3:p:512-527
    DOI: 10.1002/for.2728
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2728
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matteo Grigoletto, 1998. "Bootstrap prediction intervals for autoregressive models fitted to non-autoregressive processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 7(3), pages 285-295, December.
    2. De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
    3. Kim, Jae H, 2001. "Bootstrap-after-Bootstrap Prediction Intervals for Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 117-128, January.
    4. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    5. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
    6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    7. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    8. Kim, Jae H, 2002. "Bootstrap Prediction Intervals for Autoregressive Models of Unknown or Infinite Lag Order," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(4), pages 265-280, July.
    9. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332.
    10. P. M. Hartigan, 1985. "Computation of the Dip Statistic to Test for Unimodality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 320-325, November.
    11. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    12. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    13. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
    14. Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332.
    2. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
    3. Jing, Li, 2009. "Bootstrap prediction intervals for threshold autoregressive models," MPRA Paper 13086, University Library of Munich, Germany.
    4. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    5. Jae H. Kim, 2004. "Bias-corrected bootstrap prediction regions for vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 141-154.
    6. Gonçalves Mazzeu, Joao Henrique & Ruiz Ortega, Esther & Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    8. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    9. Anna Staszewska-Bystrova, 2009. "Bootstrap Confidence Bands for Forecast Paths," Working Papers 024, COMISEF.
    10. Kim, Jae H., 2004. "Bootstrap prediction intervals for autoregression using asymptotically mean-unbiased estimators," International Journal of Forecasting, Elsevier, vol. 20(1), pages 85-97.
    11. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
    12. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    13. Anna Staszewska-Bystrova & Peter Winker, 2016. "Improved bootstrap prediction intervals for SETAR models," Statistical Papers, Springer, vol. 57(1), pages 89-98, March.
    14. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    15. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    16. Chan, W.S & Cheung, S.H & Wu, K.H, 2004. "Multiple forecasts with autoregressive time series models: case studies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 421-430.
    17. Felix Wick & Ulrich Kerzel & Martin Hahn & Moritz Wolf & Trapti Singhal & Daniel Stemmer & Jakob Ernst & Michael Feindt, 2021. "Demand Forecasting of Individual Probability Density Functions with Machine Learning," SN Operations Research Forum, Springer, vol. 2(3), pages 1-39, September.
    18. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    19. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    20. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:3:p:512-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.