IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v17y2008i7p777-791.html
   My bibliography  Save this article

Cost‐effectiveness analysis of a multinational RCT with a binary measure of effectiveness and an interacting covariate

Author

Listed:
  • Andrew R. Willan
  • Matthew E. Kowgier

Abstract

In a recent multinational randomized clinical trial, 1356 patients from 14 countries were randomized between two arms. The primary measure of effectiveness was 30‐day survival. Health care utilization was collected on all patients and was combined with a single country's price weights to provide patient‐level cost data. The purpose of this paper is to report the results of the cost‐effectiveness analysis for the country that provided the cost weights, so as to provide a case study for illustrating recently proposed methodologies that account for skewed cost data, the between‐country variation in treatment effects, possible interactions between treatment and baseline covariates, and the difficulty of estimated adjusted risk differences. A hierarchal model is used to account for the two sources of variation (between country and between patients, within a country). The model, which uses gamma distributions for cost data and recent methods for estimating adjusted risk differences, provides overall and country‐specific estimates of treatment effects. Model estimation is facilitated by Markov chain Monte Carlo methods using the WinBUGS software. In addition, the theory of expected value of information is used to determine if the data provided by the trial are sufficient for decision making. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Andrew R. Willan & Matthew E. Kowgier, 2008. "Cost‐effectiveness analysis of a multinational RCT with a binary measure of effectiveness and an interacting covariate," Health Economics, John Wiley & Sons, Ltd., vol. 17(7), pages 777-791, July.
  • Handle: RePEc:wly:hlthec:v:17:y:2008:i:7:p:777-791
    DOI: 10.1002/hec.1289
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.1289
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.1289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrea Manca & Nigel Rice & Mark J. Sculpher & Andrew H. Briggs, 2005. "Assessing generalisability by location in trial‐based cost‐effectiveness analysis: the use of multilevel models," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 471-485, May.
    2. Claxton, K. & Thompson, K. M., 2001. "A dynamic programming approach to the efficient design of clinical trials," Journal of Health Economics, Elsevier, vol. 20(5), pages 797-822, September.
    3. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
    4. Anthony O’Hagan & John W. Stevens, 2001. "Bayesian Assessment of Sample Size for Clinical Trials of Cost-Effectiveness," Medical Decision Making, , vol. 21(3), pages 219-230, May.
    5. Richard Grieve & Richard Nixon & Simon G. Thompson & Charles Normand, 2005. "Using multilevel models for assessing the variability of multinational resource use and cost data," Health Economics, John Wiley & Sons, Ltd., vol. 14(2), pages 185-196, February.
    6. Elisabeth Fenwick & Bernie J. O'Brien & Andrew Briggs, 2004. "Cost‐effectiveness acceptability curves – facts, fallacies and frequently asked questions," Health Economics, John Wiley & Sons, Ltd., vol. 13(5), pages 405-415, May.
    7. Anthony O'Hagan & John W. Stevens, 2003. "Assessing and comparing costs: how robust are the bootstrap and methods based on asymptotic normality?," Health Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 33-49, January.
    8. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    9. Andrew R. Willan & Eleanor M. Pinto & Bernie J. O'Brien & Padma Kaul & Ron Goeree & Larry Lynd & Paul W. Armstrong, 2005. "Country specific cost comparisons from multinational clinical trials using empirical Bayesian shrinkage estimation: the Canadian ASSENT‐3 economic analysis," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 327-338, April.
    10. Richard J. Willke & Henry A. Glick & Daniel Polsky & Kevin Schulman, 1998. "Estimating country‐specific cost‐effectiveness from multinational clinical trials," Health Economics, John Wiley & Sons, Ltd., vol. 7(6), pages 481-493, September.
    11. Richard M. Nixon & Simon G. Thompson, 2005. "Methods for incorporating covariate adjustment, subgroup analysis and between‐centre differences into cost‐effectiveness evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 14(12), pages 1217-1229, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & NegrI´n, M.A., 2010. "Optimal healthcare decisions: Comparing medical treatments on a cost-effectiveness basis," European Journal of Operational Research, Elsevier, vol. 204(1), pages 180-187, July.
    2. Katarzyna Miszczynska, 2020. "Improving managerial decisions in health care sector: application of Promethee II method in public hospitals," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 30(4), pages 65-79.
    3. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thompson, Simon G. & Nixon, Richard M. & Grieve, Richard, 2006. "Addressing the issues that arise in analysing multicentre cost data, with application to a multinational study," Journal of Health Economics, Elsevier, vol. 25(6), pages 1015-1028, November.
    2. Christian E. H. Boehler & Joanne Lord, 2016. "Mind the Gap! A Multilevel Analysis of Factors Related to Variation in Published Cost-Effectiveness Estimates within and between Countries," Medical Decision Making, , vol. 36(1), pages 31-47, January.
    3. Andrew Willan, 2011. "Sample Size Determination for Cost-Effectiveness Trials," PharmacoEconomics, Springer, vol. 29(11), pages 933-949, November.
    4. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    5. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.
    6. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
    7. Mark J. Sculpher & Karl Claxton & Mike Drummond & Chris McCabe, 2006. "Whither trial‐based economic evaluation for health care decision making?," Health Economics, John Wiley & Sons, Ltd., vol. 15(7), pages 677-687, July.
    8. Simon Eckermann & Andrew R. Willan, 2009. "Globally optimal trial design for local decision making," Health Economics, John Wiley & Sons, Ltd., vol. 18(2), pages 203-216, February.
    9. Andrew R. Willan & Simon Eckermann, 2012. "Accounting For Between‐Study Variation In Incremental Net Benefit In Value Of Information Methodology," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1183-1195, October.
    10. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    11. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    12. Daniele Bregantini, 2014. "Don’t Stop ’Til You Get Enough: a quickest detection approach to HTA," Discussion Papers 14/04, Department of Economics, University of York.
    13. Manuel Gomes & Richard Grieve & Richard Nixon & W. J. Edmunds, 2012. "Statistical Methods for Cost-Effectiveness Analyses That Use Data from Cluster Randomized Trials," Medical Decision Making, , vol. 32(1), pages 209-220, January.
    14. Andrew Willan & Simon Eckermann, 2012. "Value of Information and Pricing New Healthcare Interventions," PharmacoEconomics, Springer, vol. 30(6), pages 447-459, June.
    15. Elizabeth Fenwick & Karl Claxton & Mark Sculpher & Andrew Briggs, 2000. "Improving the efficiency and relevance of health technology assessent: the role of iterative decision analytic modelling," Working Papers 179chedp, Centre for Health Economics, University of York.
    16. Theodoros Mantopoulos & Paul M. Mitchell & Nicky J. Welton & Richard McManus & Lazaros Andronis, 2016. "Choice of statistical model for cost-effectiveness analysis and covariate adjustment: empirical application of prominent models and assessment of their results," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 927-938, November.
    17. K. Claxton & P. J. Neumannn & S. S. Araki & M. C. Weinstein, "undated". "Bayesian Value-of-Information Analysis: An Application to a Policy Model of Alzheimer's Disease," Discussion Papers 00/39, Department of Economics, University of York.
    18. Aline Gauthier & Andrea Manca & Susan Anton, 2009. "Bayesian Modelling of Healthcare Resource Use in Multinational Randomized Clinical Trials," PharmacoEconomics, Springer, vol. 27(12), pages 1017-1029, December.
    19. Andrew R. Willan & Simon Eckermann, 2010. "Optimal clinical trial design using value of information methods with imperfect implementation," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 549-561, May.
    20. Richard M. Nixon & Simon G. Thompson, 2005. "Methods for incorporating covariate adjustment, subgroup analysis and between‐centre differences into cost‐effectiveness evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 14(12), pages 1217-1229, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:17:y:2008:i:7:p:777-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.