IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v88y2020i4p1753-1754.html
   My bibliography  Save this article

Diverging Tests of Equal Predictive Ability

Author

Listed:
  • Michael W. McCracken

Abstract

We investigate claims made in Giacomini and White (2006) and Diebold (2015) regarding the asymptotic normality of a test of equal predictive ability. A counterexample is provided in which, instead, the test statistic diverges with probability 1 under the null.

Suggested Citation

  • Michael W. McCracken, 2020. "Diverging Tests of Equal Predictive Ability," Econometrica, Econometric Society, vol. 88(4), pages 1753-1754, July.
  • Handle: RePEc:wly:emetrp:v:88:y:2020:i:4:p:1753-1754
    DOI: 10.3982/ECTA17523
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA17523
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA17523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    2. Daniel Borup & Martin Thyrsgaard, 2017. "Statistical tests for equal predictive ability across multiple forecasting methods," CREATES Research Papers 2017-19, Department of Economics and Business Economics, Aarhus University.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    5. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    6. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    7. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    8. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    9. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filip Stanek, 2021. "Optimal Out-of-Sample Forecast Evaluation under Stationarity," CERGE-EI Working Papers wp712, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    2. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.
    3. David Staines, 2023. "Stochastic Equilibrium the Lucas Critique and Keynesian Economics," Papers 2312.16214, arXiv.org.
    4. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    5. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2023. "Out-of-sample tests for conditional quantile coverage an application to Growth-at-Risk," Journal of Econometrics, Elsevier, vol. 236(2).
    6. Filip Staněk, 2023. "Optimal out‐of‐sample forecast evaluation under stationarity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2249-2279, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    2. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    3. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
    4. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    5. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
    6. Boneva, Lena & Fawcett, Nicholas & Masolo, Riccardo M. & Waldron, Matt, 2019. "Forecasting the UK economy: Alternative forecasting methodologies and the role of off-model information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 100-120.
    7. Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Michael W. McCracken, 2019. "Tests of Conditional Predictive Ability: Some Simulation Evidence," Working Papers 2019-11, Federal Reserve Bank of St. Louis.
    10. Laura Coroneo & Fabrizio Iacone, 2015. "Comparing predictive accuracy in small samples," Discussion Papers 15/15, Department of Economics, University of York.
    11. Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
    12. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    13. Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "What Helps Forecast U.S. Inflation?—Mind the Gap!," Koç University-TUSIAD Economic Research Forum Working Papers 1615, Koc University-TUSIAD Economic Research Forum.
    14. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    15. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    16. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    17. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
    18. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    19. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    20. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:88:y:2020:i:4:p:1753-1754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.