IDEAS home Printed from https://ideas.repec.org/a/vrs/logitl/v14y2023i1p1-11n3.html
   My bibliography  Save this article

Determination of the Number of Required Charging Stations on a German Motorway Based on Real Traffic Data and Discrete Event-Based Simulation

Author

Listed:
  • Witt Andreas

    (University of Fulda, Department of Business, Leipziger Straße 123, 36037, Fulda, Germany)

Abstract

To make travelling with electric vehicles (EVs) over long distances as convenient as travelling with traditional vehicles, charging stations along motorways are necessary. Furthermore, waiting times for free charging points must be short to enable a fast onward journey, and this also on days with heavy traffic volumes. To determine the required number of charging stations in more detail, a model was created that simulates the process of arriving and leaving cars at a charging park based on real traffic data. For the traffic data, a location and date in the Munich region were chosen that represent a peak demand and thus a “worst case” scenario. The ability to cover such scenarios as well seems to be important because otherwise severe congestion with long waiting times would appear on days with heavy traffic, which would make the use of EVs very unattractive. It turned out that 150 to 600 charging stations – depending on the considered scenario – would be necessary to charge proportions of 10% to 20% of all passing cars.

Suggested Citation

  • Witt Andreas, 2023. "Determination of the Number of Required Charging Stations on a German Motorway Based on Real Traffic Data and Discrete Event-Based Simulation," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 14(1), pages 1-11, January.
  • Handle: RePEc:vrs:logitl:v:14:y:2023:i:1:p:1-11:n:3
    DOI: 10.2478/logi-2023-0001
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/logi-2023-0001
    Download Restriction: no

    File URL: https://libkey.io/10.2478/logi-2023-0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    3. Haoming Liu & Wenqian Yin & Xiaoling Yuan & Man Niu, 2018. "Reserving Charging Decision-Making Model and Route Plan for Electric Vehicles Considering Information of Traffic and Charging Station," Sustainability, MDPI, vol. 10(5), pages 1-20, April.
    4. Hung, Ying-Chao & PakHai Lok, Horace & Michailidis, George, 2022. "Optimal routing for electric vehicle charging systems with stochastic demand: A heavy traffic approximation approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 526-541.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingkun Song & Udaya K. Madawala & Craig A. Baguley, 2023. "Optimal Planning Strategy for Reconfigurable Electric Vehicle Chargers in Car Parks," Energies, MDPI, vol. 16(20), pages 1-21, October.
    2. Byungsung Lee & Haesung Lee & Hyun Ahn, 2020. "Improving Load Forecasting of Electric Vehicle Charging Stations Through Missing Data Imputation," Energies, MDPI, vol. 13(18), pages 1-15, September.
    3. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    4. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    5. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    6. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    7. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    8. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    9. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    10. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    11. Jefimowski, Włodzimierz & Szeląg, Adam & Steczek, Marcin & Nikitenko, Anatolii, 2020. "Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study," Energy, Elsevier, vol. 195(C).
    12. Anders F. Jensen & Thomas K. Rasmussen & Carlo G. Prato, 2020. "A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    13. Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
    14. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    15. Shepero, Mahmoud & Munkhammar, Joakim, 2018. "Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data," Applied Energy, Elsevier, vol. 231(C), pages 1089-1099.
    16. Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    17. Pablo Tamay & Esteban Inga, 2022. "Charging Infrastructure for Electric Vehicles Considering Their Integration into the Smart Grid," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    18. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    19. Ye Yang & Zhongfu Tan & Yilong Ren, 2020. "Research on Factors That Influence the Fast Charging Behavior of Private Battery Electric Vehicles," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    20. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:logitl:v:14:y:2023:i:1:p:1-11:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.