Advanced Search
MyIDEAS: Login to save this article or follow this journal

Maximum Likelihood Estimation of a General Unbalanced Spatial Random Effects Model: a Monte Carlo Study

Contents:

Author Info

  • Michael Pfaffermayr

Abstract

Abstract This paper discusses the maximum likelihood estimator of a general unbalanced spatial random effects model with normal disturbances, assuming that some observations are missing at random. Monte Carlo simulations show that the maximum likelihood estimator for unbalanced panels performs well and that missing observations affect mainly the root mean square error. As expected, these estimates are less efficient than those based on the unobserved balanced model, especially if the share of missing observations is large or spatial autocorrelation in the error terms is pronounced. Estimation de vraisemblance maximale d'un mod�le g�n�ral d'effets al�atoires spatiaux d�s�quilibr�: une �tude Monte Carlo R�SUM� La pr�sente communication se penche sur l'estimateur du maximum de vraisemblance d'un mod�le g�n�ral d'effets al�atoires spatiaux d�s�quilibr� avec des perturbations normales, en supposant l'absence al�atoire de certaines observations. Des simulations de Monte Carlo montrent que des groupes d�s�quilibr�s se comporte bien, et que les observations manquantes affectent principalement l'erreur de la moyenne quadratique. Comme pr�vu, ces �valuations sont moins efficaces que celles qui sont bas�es sur le mod�le �quilibr� non observ�, notamment si la part des observations manquantes est importantes, ou l'on d�clare une autocorr�lation spatiale dans les termes d'erreur. Estimaci�n de la probabilidad m�xima de un modelo espacial general desequilibrado de efectos al azar: un estudio de Monte Carlo R�SUM�N Este trabajo discute el estimador de probabilidad m�xima de un modelo espacial general desequilibrado de efectos al azar con alteraciones normales, suponiendo que faltan algunas observaciones al azar. Las simulaciones de Monte Carlo muestran que el estimador de probabilidad m�xima para los paneles desequilibrados funciona satisfactoriamente, y que las observaciones omisas afectan principalmente al error de la media cuadr�tica. Como se supon�a, estas estimaciones son menos eficientes que las basadas en el modelo equilibrado inadvertido, especialmente si la cantidad de omisiones es grande/o la autocorrelaci�n en los t�rminos de error es pronunciada.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.taylorandfrancisonline.com/doi/abs/10.1080/17421770903317645
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Spatial Economic Analysis.

Volume (Year): 4 (2009)
Issue (Month): 4 ()
Pages: 467-483

as in new window
Handle: RePEc:taf:specan:v:4:y:2009:i:4:p:467-483

Contact details of provider:
Web page: http://www.tandfonline.com/RSEA20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/RSEA20

Related research

Keywords: Unbalanced panel data; spatially autocorrelated disturbances; maximum likelihood estimation; C21; C23;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:4:y:2009:i:4:p:467-483. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.