IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i1p115-129.html
   My bibliography  Save this article

Convertible bond valuation in a jump diffusion setting with stochastic interest rates

Author

Listed:
  • Laura Ballotta
  • Ioannis Kyriakou

Abstract

This paper proposes an integrated pricing framework for convertible bonds, which comprises firm value evolving as an exponential jump diffusion, correlated stochastic interest rates movements and an efficient numerical pricing scheme. By construction, the proposed stochastic model fits in the framework of affine jump diffusion processes of Duffie et al. [ Econometrica , 2000, 68 , 1343-1376] with tractable behaviour. We define the firm's optimal call policy and investigate its impact on the computed convertible bond prices. We illustrate the performance of the numerical scheme and highlight the effects originated by the inclusion of jumps, stochastic interest rates and a non-zero correlation structure between firm value and interest rates.

Suggested Citation

  • Laura Ballotta & Ioannis Kyriakou, 2015. "Convertible bond valuation in a jump diffusion setting with stochastic interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 115-129, January.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:1:p:115-129
    DOI: 10.1080/14697688.2014.935464
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2014.935464
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2014.935464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    3. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    4. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    5. van Haastrecht, Alexander & Lord, Roger & Pelsser, Antoon & Schrager, David, 2009. "Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 436-448, December.
    6. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    7. Leland, Hayne E, 1994. "Corporate Debt Value, Bond Covenants, and Optimal Capital Structure," Journal of Finance, American Finance Association, vol. 49(4), pages 1213-1252, September.
    8. Ingersoll, Jonathan Jr., 1977. "A contingent-claims valuation of convertible securities," Journal of Financial Economics, Elsevier, vol. 4(3), pages 289-321, May.
    9. Asquith, Paul & Mullins, David W, Jr, 1991. "Convertible Debt: Corporate Call Policy and Voluntary Conversion," Journal of Finance, American Finance Association, vol. 46(4), pages 1273-1289, September.
    10. Leland, Hayne E & Toft, Klaus Bjerre, 1996. "Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," Journal of Finance, American Finance Association, vol. 51(3), pages 987-1019, July.
    11. Brennan, Michael J. & Schwartz, Eduardo S., 1980. "Analyzing Convertible Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(4), pages 907-929, November.
    12. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    13. Young Ho Eom, 2004. "Structural Models of Corporate Bond Pricing: An Empirical Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 499-544.
    14. Barone-Adesi, Giovanni & Bermudez, Ana & Hatgioannides, John, 2003. "Two-factor convertible bonds valuation using the method of characteristics/finite elements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1801-1831, August.
    15. Longstaff, Francis A & Schwartz, Eduardo S, 1995. "A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
    16. Filippo Fiorani & Elisa Luciano & Patrizia Semeraro, 2007. "Single and joint default in a structural model with purely discontinuous assets," Carlo Alberto Notebooks 41, Collegio Carlo Alberto.
    17. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    19. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    20. Filippo Fiorani & Elisa Luciano & Patrizia Semeraro, 2010. "Single and joint default in a structural model with purely discontinuous asset prices," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 249-263.
    21. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    22. Andricopoulos, Ari D. & Widdicks, Martin & Duck, Peter W. & Newton, David P., 2003. "Universal option valuation using quadrature methods," Journal of Financial Economics, Elsevier, vol. 67(3), pages 447-471, March.
    23. Lech Grzelak & Cornelis Oosterlee & Sacha Van Weeren, 2011. "The affine Heston model with correlated Gaussian interest rates for pricing hybrid derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 11(11), pages 1647-1663.
    24. Asquith, Paul, 1995. "Convertible Bonds Are Not Called Late," Journal of Finance, American Finance Association, vol. 50(4), pages 1275-1289, September.
    25. Brennan, M J & Schwartz, Eduardo S, 1977. "Convertible Bonds: Valuation and Optimal Strategies for Call and Conversion," Journal of Finance, American Finance Association, vol. 32(5), pages 1699-1715, December.
    26. Akihiko Takahashi & Takao Kobayashi & Naruhisa Nakagawa, 2001. "Pricing Convertible Bonds with Default Risk: A Duffie-Singleton Approach," CIRJE F-Series CIRJE-F-140, CIRJE, Faculty of Economics, University of Tokyo.
    27. Lech A. Grzelak & Cornelis W. Oosterlee & Sacha Van Weeren, 2012. "Extension of stochastic volatility equity models with the Hull--White interest rate process," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 89-105, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radha Krishn Coonjobeharry & Désiré Yannick Tangman & Muddun Bhuruth, 2016. "A Two-Factor Jump-Diffusion Model For Pricing Convertible Bonds With Default Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-26, September.
    2. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    3. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    4. Yue Kuen Kwok, 2014. "Game option models of convertible bonds: Determinants of call policies," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-19.
    5. Tian‐Shyr Dai & Chen‐Chiang Fan & Liang‐Chih Liu & Chuan‐Ju Wang & Jr‐Yan Wang, 2022. "A stochastic‐volatility equity‐price tree for pricing convertible bonds with endogenous firm values and default risks determined by the first‐passage default model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2103-2134, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Jonathan A. Batten & Karren Lee-Hwei Khaw & Martin R. Young, 2014. "Convertible Bond Pricing Models," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 775-803, December.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Tian‐Shyr Dai & Chen‐Chiang Fan & Liang‐Chih Liu & Chuan‐Ju Wang & Jr‐Yan Wang, 2022. "A stochastic‐volatility equity‐price tree for pricing convertible bonds with endogenous firm values and default risks determined by the first‐passage default model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2103-2134, December.
    6. Finnerty, John D., 2015. "Valuing convertible bonds and the option to exchange bonds for stock," Journal of Corporate Finance, Elsevier, vol. 31(C), pages 91-115.
    7. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    8. Liu, Liang-Chih & Dai, Tian-Shyr & Wang, Chuan-Ju, 2016. "Evaluating corporate bonds and analyzing claim holders’ decisions with complex debt structure," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 151-174.
    9. repec:wyi:journl:002109 is not listed on IDEAS
    10. Siddiqi, Mazhar A., 2009. "Investigating the effectiveness of convertible bonds in reducing agency costs: A Monte-Carlo approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(4), pages 1360-1370, November.
    11. Sarkar, Sudipto, 2003. "Early and late calls of convertible bonds: Theory and evidence," Journal of Banking & Finance, Elsevier, vol. 27(7), pages 1349-1374, July.
    12. Han-Hsing Lee & Kuanyu Shih & Kehluh Wang, 2016. "Measuring sovereign credit risk using a structural model approach," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1097-1128, November.
    13. Yalin Gündüz & Marliese Uhrig-Homburg, 2014. "Does modeling framework matter? A comparative study of structural and reduced-form models," Review of Derivatives Research, Springer, vol. 17(1), pages 39-78, April.
    14. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    15. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    16. Jang, Bong-Gyu & Rhee, Yuna & Yoon, Ji Hee, 2016. "Business cycle and credit risk modeling with jump risks," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 15-36.
    17. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    18. Kanak Patel & Ricardo Pereira, 2007. "Expected Default Probabilities in Structural Models: Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 34(1), pages 107-133, January.
    19. Benjamin Yibin Zhang & Hao Zhou & Haibin Zhu, 2009. "Explaining Credit Default Swap Spreads with the Equity Volatility and Jump Risks of Individual Firms," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5099-5131, December.
    20. Emmanuel Coffie, 2021. "Delay stochastic interest rate model with jump and strong convergence in Monte Carlo simulations," Papers 2103.07651, arXiv.org, revised Jul 2021.
    21. Duarte, Jefferson & Longstaff, Francis A. & Yu, Fan, 2005. "Risk and Return in Fixed Income Arbitage: Nickels in Front of a Steamroller?," University of California at Los Angeles, Anderson Graduate School of Management qt6zx6m7fp, Anderson Graduate School of Management, UCLA.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:1:p:115-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.