IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2013i8p1467-1477.html
   My bibliography  Save this article

Forecasting forward defaults: a simple hazard model with competing risks

Author

Listed:
  • Ruey-Ching Hwang
  • Chih-Kang Chu

Abstract

A forward default prediction method based on the discrete-time competing risk hazard model (DCRHM) is proposed. The proposed model is developed from the discrete-time hazard model (DHM) by replacing the binary response data in DHM with the multinomial response data, and thus allowing the firms exiting public markets for different causes to have different effects on forward default prediction. We show that DCRHM is a reliable and efficient model for forward default prediction through maximum likelihood analysis. We use actual panel data-sets to illustrate the proposed methodology. Using an expanding rolling window approach, our empirical results statistically confirm that DCRHM has better and more robust out-of-sample performance than DHM, in the sense of yielding more accurate predicted number of forward defaults. Thus, DCRHM is a useful alternative for studying forward default losses on portfolios.

Suggested Citation

  • Ruey-Ching Hwang & Chih-Kang Chu, 2013. "Forecasting forward defaults: a simple hazard model with competing risks," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1467-1477, August.
  • Handle: RePEc:taf:quantf:v:14:y:2013:i:8:p:1467-1477
    DOI: 10.1080/14697688.2013.842653
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2013.842653
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2013.842653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Ruey-Ching Hwang & Jhao-Siang Siao & Huimin Chung & C. Chu, 2011. "Assessing bankruptcy prediction models via information content of technical inefficiency," Journal of Productivity Analysis, Springer, vol. 36(3), pages 263-273, December.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Sudheer Chava & Catalina Stefanescu & Stuart Turnbull, 2011. "Modeling the Loss Distribution," Management Science, INFORMS, vol. 57(7), pages 1267-1287, July.
    5. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    6. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    7. Orth, Walter, 2013. "Multi-period credit default prediction with time-varying covariates," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 214-222.
    8. Hwang, Ruey-Ching & Chung, Huimin & Chu, C.K., 2010. "Predicting issuer credit ratings using a semiparametric method," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 120-137, January.
    9. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    10. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    11. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    12. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    13. Maria Vassalou & Yuhang Xing, 2004. "Default Risk in Equity Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 831-868, April.
    14. Hwang, Ruey-Ching, 2012. "A varying-coefficient default model," International Journal of Forecasting, Elsevier, vol. 28(3), pages 675-688.
    15. K. F. Cheng & C. K. Chu & Ruey-Ching Hwang, 2010. "Predicting bankruptcy using the discrete-time semiparametric hazard model," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 1055-1066.
    16. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    17. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Ruey-Ching, 2012. "A varying-coefficient default model," International Journal of Forecasting, Elsevier, vol. 28(3), pages 675-688.
    2. Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
    3. Ruey-Ching Hwang & Jhao-Siang Siao & Huimin Chung & C. Chu, 2011. "Assessing bankruptcy prediction models via information content of technical inefficiency," Journal of Productivity Analysis, Springer, vol. 36(3), pages 263-273, December.
    4. Ha Nguyen, 2023. "Particle MCMC in forecasting frailty correlated default models with expert opinion," Papers 2304.11586, arXiv.org, revised Aug 2023.
    5. Huang, Hsing-Hua & Lee, Han-Hsing, 2013. "Product market competition and credit risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 324-340.
    6. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    7. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    8. Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611, arXiv.org.
    9. Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    10. Tomasz Berent & Radosław Rejman, 2021. "Bankruptcy Prediction with a Doubly Stochastic Poisson Forward Intensity Model and Low-Quality Data," Risks, MDPI, vol. 9(12), pages 1-24, December.
    11. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    12. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    13. Elizabeth Gutierrez & Jake Krupa & Miguel Minutti-Meza & Maria Vulcheva, 2020. "Do going concern opinions provide incremental information to predict corporate defaults?," Review of Accounting Studies, Springer, vol. 25(4), pages 1344-1381, December.
    14. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    15. Zhang, Xuan & Zhao, Yang & Yao, Xiao, 2022. "Forecasting corporate default risk in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1054-1070.
    16. Koresh Galil & Neta Gilat, 2019. "Predicting Default More Accurately: To Proxy or Not to Proxy for Default?," International Review of Finance, International Review of Finance Ltd., vol. 19(4), pages 731-758, December.
    17. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    18. Asis, Gonzalo & Chari, Anusha & Haas, Adam, 2021. "In search of distress risk in emerging markets," Journal of International Economics, Elsevier, vol. 131(C).
    19. Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023. "Do decreases in Distance-to-Default predict rating downgrades?," Economic Modelling, Elsevier, vol. 129(C).
    20. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2013:i:8:p:1467-1477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.