Advanced Search
MyIDEAS: Login

Inference for Income Distributions Using Grouped Data

Contents:

Author Info

  • Gholamreza Hajargasht
  • William E. Griffiths
  • Joseph Brice
  • D.S. Prasada Rao
  • Duangkamon Chotikapanich

Abstract

We develop a general approach to estimation and inference for income distributions using grouped or aggregate data that are typically available in the form of population shares and class mean incomes, with unknown group bounds. We derive generic moment conditions and an optimal weight matrix that can be used for generalized method-of-moments (GMM) estimation of any parametric income distribution. Our derivation of the weight matrix and its inverse allows us to express the seemingly complex GMM objective function in a relatively simple form that facilitates estimation. We show that our proposed approach, which incorporates information on class means as well as population proportions, is more efficient than maximum likelihood estimation of the multinomial distribution, which uses only population proportions. In contrast to the earlier work of Chotikapanich, Griffiths, and Rao, and Chotikapanich, Griffiths, Rao, and Valencia, which did not specify a formal GMM framework, did not provide methodology for obtaining standard errors, and restricted the analysis to the beta-2 distribution, we provide standard errors for estimated parameters and relevant functions of them, such as inequality and poverty measures, and we provide methodology for all distributions. A test statistic for testing the adequacy of a distribution is proposed. Using eight countries/regions for the year 2005, we show how the methodology can be applied to estimate the parameters of the generalized beta distribution of the second kind (GB2), and its special-case distributions, the beta-2, Singh--Maddala, Dagum, generalized gamma, and lognormal distributions. We test the adequacy of each distribution and compare predicted and actual income shares, where the number of groups used for prediction can differ from the number used in estimation. Estimates and standard errors for inequality and poverty measures are provided. Supplementary materials for this article are available online.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1080/07350015.2012.707590
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Journal of Business & Economic Statistics.

Volume (Year): 30 (2012)
Issue (Month): 4 (May)
Pages: 563-575

as in new window
Handle: RePEc:taf:jnlbes:v:30:y:2012:i:4:p:563-575

Contact details of provider:
Web page: http://www.tandfonline.com/UBES20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/UBES20

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Butler, Richard J. & McDonald, James B., 1989. "Using incomplete moments to measure inequality," Journal of Econometrics, Elsevier, vol. 42(1), pages 109-119, September.
  2. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 133-152.
  3. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, December.
  4. D.S. Prasada Rao & Duangkamon Chotikapanich & William E. Griffiths, 2004. "Estimating and Combining National Income Distributions using Limited Data," Econometric Society 2004 Australasian Meetings 213, Econometric Society.
  5. Duangkamon Chotikapanich & William E Griffiths & D.S. Prasada Rao & Vicar Valencia, 2009. "Global Income Distribution and Inequality: 1993 and 2000," Department of Economics - Working Papers Series 1062, The University of Melbourne.
  6. McDonald, James B & Ransom, Michael R, 1979. "Functional Forms, Estimation Techniques and the Distribution of Income," Econometrica, Econometric Society, vol. 47(6), pages 1513-25, November.
  7. McDonald, James B, 1984. "Some Generalized Functions for the Size Distribution of Income," Econometrica, Econometric Society, vol. 52(3), pages 647-63, May.
  8. Wu, Ximing & Perloff, Jeffrey M., 2007. "GMM estimation of a maximum entropy distribution with interval data," Journal of Econometrics, Elsevier, vol. 138(2), pages 532-546, June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Duangkamon Chotikapanich, William Griffiths, Wasana Karunarathne, D.S. Prasada Rao, 2012. "Calculating Poverty Measures from the Generalized Beta Income Distribution," Department of Economics - Working Papers Series 1154, The University of Melbourne.
  2. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
  3. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 5(3), pages 207-230, September.
  4. William E. Griffiths and Gholamreza Hajargasht, 2012. "GMM Estimation of Mixtures from Grouped Data:," Department of Economics - Working Papers Series 1148, The University of Melbourne.
  5. Gholamreza Hajargasht and William E. Griffiths, 2012. "Pareto-Lognormal Income Distributions:Inequality and Poverty Measures, Estimation and Performance," Department of Economics - Working Papers Series 1149, The University of Melbourne.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2012:i:4:p:563-575. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.