IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v6y2000i2p113-125.html
   My bibliography  Save this article

Expectations of monetary policy in Australia implied by the probability distribution of interest rate derivatives

Author

Listed:
  • Ramaprasad Bhar
  • Carl Chiarella

Abstract

The paper describes and compares different methods of extracting the implied probability distribution of the underlying interest rate futures from the prices of traded options on these futures as well as from past futures prices. These methods are applied to short-term contracts on bank accepted bills trading on the Sydney Futures Exchange. The information on the distribution of the underlying asset thus obtained is very important to the central bank authorities since this allows them to monitor market expectations regarding future price movements. Alternatively market reaction to central, bank monetary policy changes may be judged this way. It is also important to practitioners for use in pricing over the counter (OTC) or exotic products where the trading volume is not particularly high. In that situation, the information on the distribution recovered from highly traded products from the exchange may be used as representative for the OTC products as well. As an empirical application, the recovered information on distribution is analysed in the context of reductions in interest rates in Australia by the Reserve Bank between July 1996 and May 1997.

Suggested Citation

  • Ramaprasad Bhar & Carl Chiarella, 2000. "Expectations of monetary policy in Australia implied by the probability distribution of interest rate derivatives," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 113-125.
  • Handle: RePEc:taf:eurjfi:v:6:y:2000:i:2:p:113-125
    DOI: 10.1080/13518470050020798
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470050020798
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470050020798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Steven Cole & Michael Impson & William Reichenstein, 1991. "Do treasury bill futures rates satisfy rational expectation properties?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(5), pages 591-601, October.
    2. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    3. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    6. Heynen, Ronald & Kemna, Angelien & Vorst, Ton, 1994. "Analysis of the Term Structure of Implied Volatilities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(1), pages 31-56, March.
    7. Xu, Xinzhong & Taylor, Stephen J., 1994. "The Term Structure of Volatility Implied by Foreign Exchange Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(1), pages 57-74, March.
    8. Peter A. Abken & Dilip B. Madan & Buddhavarapu Sailesh Ramamurtie, 1996. "Estimation of risk-neutral and statistical densities by Hermite polynomial approximation: with an application to Eurodollar futures options," FRB Atlanta Working Paper 96-5, Federal Reserve Bank of Atlanta.
    9. Robert Jarrow, 2017. "Derivatives," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 3, pages 19-28, World Scientific Publishing Co. Pte. Ltd..
    10. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    11. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halil Ibrahim Aydin & Ahmet Degerli & Pinar Ozlu, 2010. "Recovering Risk-Neutral Densities from Exchange Rate Options: Evidence in Turkey (Kur Opsiyonlarindan Riske Duyarsiz Yogunluk Fonksiyonu Cikarimi: Turkiye Ornegi)," Working Papers 1003, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    2. Marins, Jaqueline Terra Moura & Vicente, José Valentim Machado, 2017. "Do the central bank actions reduce interest rate volatility?," Economic Modelling, Elsevier, vol. 65(C), pages 129-137.
    3. Jukka Sihvonen & Sami Vähämaa, 2014. "Forward‐Looking Monetary Policy Rules and Option‐Implied Interest Rate Expectations," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(4), pages 346-373, April.
    4. Roberto Casarin & Fabrizio Leisen & German Molina & Enrique ter Horst, 2014. "A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities," Papers 1409.1956, arXiv.org.
    5. Vahamaa, Sami, 2005. "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB," Journal of Economics and Business, Elsevier, vol. 57(1), pages 23-38.
    6. Schmitz, Jochen & Ledebur, Oliver von, 2012. "The 2007 emerging corn price surge revisited – Was it expected or a large surprise?," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123971, International Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    6. Marie Briere, 2006. "Market Reactions to Central Bank Communication Policies :Reading Interest Rate Options Smiles," Working Papers CEB 38, ULB -- Universite Libre de Bruxelles.
    7. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    8. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    9. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2011. "How important is the term structure in implied volatility surface modeling? Evidence from foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 30(4), pages 623-640, June.
    10. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    11. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    12. Jarno Talponen, 2013. "Matching distributions: Asset pricing with density shape correction," Papers 1312.4227, arXiv.org, revised Mar 2018.
    13. Robert R Bliss & Nikolaos Panigirtzoglou, 2000. "Testing the stability of implied probability density functions," Bank of England working papers 114, Bank of England.
    14. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    15. Krylova, Elizaveta & Nikkinen, Jussi & Vähämaa, Sami, 2009. "Cross-dynamics of volatility term structures implied by foreign exchange options," Journal of Economics and Business, Elsevier, vol. 61(5), pages 355-375, September.
    16. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    17. Ram Bhar & Carl Chiarella, 1996. "Bootstrap Results From the State Space From Representation of the Heath-Jarrow-Morton Model," Working Paper Series 66, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    18. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    19. Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.
    20. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:6:y:2000:i:2:p:113-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.