Advanced Search
MyIDEAS: Login to save this article or follow this journal

Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model


Author Info

  • Michael Smith
  • Andrew Pitts


A bivariate stochastic volatility model is employed to measure the effect of intervention by the Bank of Japan (BOJ) on daily returns and volume in the USD/YEN foreign exchange market. Missing observations are accounted for, and a data-based Wishart prior for the precision matrix of the errors to the transition equation that is in line with the likelihood is suggested. Empirical results suggest there is strong conditional heteroskedasticity in the mean-corrected volume measure, as well as contemporaneous correlation in the errors to both the observation and transition equations. A threshold model is used for the BOJ reaction function, which is estimated jointly with the bivariate stochastic volatility model via Markov chain Monte Carlo. This accounts for endogeneity between volatility in the market and the BOJ reaction function, something that has hindered much previous empirical analysis in the literature on central bank intervention. The empirical results suggest there was a shift in behavior by the BOJ, with a movement away from a policy of market stabilization and toward a role of support for domestic monetary policy objectives. Throughout, we observe “leaning against the wind” behavior, something that is a feature of most previous empirical analysis of central bank intervention. A comparison with a bivariate EGARCH model suggests that the bivariate stochastic volatility model produces estimates that better capture spikes in in-sample volatility. This is important in improving estimates of a central bank reaction function because it is at these periods of high daily volatility that central banks more frequently intervene.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 25 (2006)
Issue (Month): 2-3 ()
Pages: 425-451

as in new window
Handle: RePEc:taf:emetrv:v:25:y:2006:i:2-3:p:425-451

Contact details of provider:
Web page:

Order Information:

Related research

Keywords: Central bank intervention; Foreign exchange volume; Markov chain Monte Carlo; Missing observations; Multivariate stochastic volatility; Threshold model;


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
  2. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  3. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
  4. Jacek Osiewalski & Anna Pajor, 2009. "Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 1(2), pages 179-202, November.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:25:y:2006:i:2-3:p:425-451. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.