IDEAS home Printed from https://ideas.repec.org/a/taf/ecsysr/v29y2017i3p452-461.html
   My bibliography  Save this article

On the limited usability of the inoperability IO model

Author

Listed:
  • Jan Oosterhaven

Abstract

This note shows that the inoperability input–output model (IIM) estimates only a part of mainly the negative indirect economic impacts of disasters, whereas it neglects most of the positive indirect impacts. This means that the IIM is not suited to prioritize industries for policy interventions that aim at reducing the negative impacts of such disasters. Besides, this note shows that the application of the IIM is problematic and tends to overestimate the subset of impacts that the model is able to quantify. Finally, we identify two approaches that much better capture the variety of different disaster impacts.

Suggested Citation

  • Jan Oosterhaven, 2017. "On the limited usability of the inoperability IO model," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 452-461, July.
  • Handle: RePEc:taf:ecsysr:v:29:y:2017:i:3:p:452-461
    DOI: 10.1080/09535314.2017.1301395
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09535314.2017.1301395
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09535314.2017.1301395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam Rose & Gauri-Shankar Guha, 2004. "Computable General Equilibrium Modeling of Electric Utility Lifeline Losses from Earthquakes," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 7, pages 119-141, Springer.
    2. Jose-Miguel Albala-Bertrand, 2014. "Disasters and the Networked Economy. A Book Summary," Working Papers 718, Queen Mary University of London, School of Economics and Finance.
    3. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    4. Jan Oosterhaven & Ed C van der Knijff & Gerard J Eding, 2003. "Estimating Interregional Economic Impacts: An Evaluation of Nonsurvey, Semisurvey, and Full-Survey Methods," Environment and Planning A, , vol. 35(1), pages 5-18, January.
    5. Michael Greenberg & Charles Haas & Anthony Cox & Karen Lowrie & Katherine McComas & Warner North, 2012. "Ten Most Important Accomplishments in Risk Analysis, 1980–2010," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 771-781, May.
    6. Satoshi Tsuchiya & Hirokazu Tatano & Norio Okada, 2007. "Economic Loss Assessment due to Railroad and Highway Disruptions," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 147-162.
    7. Joost R. Santos & Yacov Y. Haimes, 2004. "Modeling the Demand Reduction Input‐Output (I‐O) Inoperability Due to Terrorism of Interconnected Infrastructures," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1437-1451, December.
    8. Barker, Kash & Haimes, Yacov Y., 2009. "Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 819-829.
    9. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    10. Barker, Kash & Santos, Joost R., 2010. "Measuring the efficacy of inventory with a dynamic input-output model," International Journal of Production Economics, Elsevier, vol. 126(1), pages 130-143, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    2. Yagi, Michiyuki & Managi, Shunsuke, 2023. "The spillover effects of rising energy prices following 2022 Russian invasion of Ukraine," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 680-695.
    3. Manfred Lenzen & Mengyu Li & Arunima Malik & Francesco Pomponi & Ya-Yen Sun & Thomas Wiedmann & Futu Faturay & Jacob Fry & Blanca Gallego & Arne Geschke & Jorge Gómez-Paredes & Keiichiro Kanemoto & St, 2020. "Global socio-economic losses and environmental gains from the Coronavirus pandemic," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.
    4. Emily P. Harvey & Dion R. J. O'Neale, 2019. "Using network science to quantify economic disruptions in regional input-output networks," Papers 1910.12498, arXiv.org.
    5. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Michiyuki Yagi & Shigemi Kagawa & Shunsuke Managi & Hidemichi Fujii & Dabo Guan, 2020. "Supply Constraint from Earthquakes in Japan in Input–Output Analysis," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1811-1830, September.
    7. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    8. Monge, Juan J. & McDonald, Garry W., 2020. "The Economy-Wide Value-at-Risk from the Exposure of Natural Capital to Climate Change and Extreme Natural Events: The Case of Wind Damage and Forest Recreational Services in New Zealand," Ecological Economics, Elsevier, vol. 176(C).
    9. Jian Jin & Haoran Zhou, 2023. "A Demand-Side Inoperability Input–Output Model for Strategic Risk Management: Insight from the COVID-19 Outbreak in Shanghai, China," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    10. Andre F. T. Avelino & Sandy Dall'erba, 2019. "Comparing the Economic Impact of Natural Disasters Generated by Different Input–Output Models: An Application to the 2007 Chehalis River Flood (WA)," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 85-104, January.
    11. Irfan Ahmed & Claudio Socci & Rosita Pretaroli & Francesca Severini & Stefano Deriu, 2022. "Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 426-453, January.
    12. Tao Sun, 2024. "Systemic importance of financial services and insurance sectors: a world input–output network analysis," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(1), pages 63-96, January.
    13. Krista Danielle S. Yu & Kathleen B. Aviso & Joost R. Santos & Raymond R. Tan, 2020. "The Economic Impact of Lockdowns: A Persistent Inoperability Input-Output Approach," Economies, MDPI, vol. 8(4), pages 1-14, December.
    14. Kunze, Sven, 2020. "Unraveling the effects of tropical cyclones on economic sectors worldwide," Working Papers 0685, University of Heidelberg, Department of Economics.
    15. Yagi, Michiyuki & Managi, Shunsuke, 2021. "Global supply constraints from the 2008 and COVID-19 crises," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 514-528.
    16. Sven Kunze, 2021. "Unraveling the Effects of Tropical Cyclones on Economic Sectors Worldwide: Direct and Indirect Impacts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 545-569, April.
    17. Marly Valenti Patandianan & Hiroyuki Shibusawa, 2020. "Impacts of disaster on the inbound tourism economy in Kyushu, Japan: a demand side analysis," Asia-Pacific Journal of Regional Science, Springer, vol. 4(3), pages 759-793, October.
    18. Jan Oosterhaven & Johannes Többen, 2017. "Wider economic impacts of heavy flooding in Germany: a non-linear programming approach," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(4), pages 404-428, October.
    19. Ortuzar, Iban & Serrano, Ana & Xabadia, Àngels, 2023. "Macroeconomic impacts of water allocation under droughts. Accounting for global supply chains in a multiregional context," Ecological Economics, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oosterhaven, Jan, 2015. "On the doubtful usability of the inoperability IO model," Research Report 15008-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    2. Jan Oosterhaven & Johannes Többen, 2017. "Wider economic impacts of heavy flooding in Germany: a non-linear programming approach," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(4), pages 404-428, October.
    3. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    4. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    5. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    6. Baghersad, Milad & Zobel, Christopher W., 2015. "Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors," International Journal of Production Economics, Elsevier, vol. 168(C), pages 71-80.
    7. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    8. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    9. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    10. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    11. Iman Rahimi Aloughareh & Mohsen Ghafory Ashtiany & Kiarash Nasserasadi, 2016. "An Integrated Methodology For Regional Macroeconomic Loss Estimation Of Earthquake: A Case Study Of Tehran," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(04), pages 1-24, September.
    12. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    13. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    14. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    15. Naqvi, Asjad, 2017. "Deep Impact: Geo-Simulations as a Policy Toolkit for Natural Disasters," World Development, Elsevier, vol. 99(C), pages 395-418.
    16. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
    17. Andre F. T. Avelino & Sandy Dall'erba, 2019. "Comparing the Economic Impact of Natural Disasters Generated by Different Input–Output Models: An Application to the 2007 Chehalis River Flood (WA)," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 85-104, January.
    18. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
    19. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Qin Fan & Meri Davlasheridze, 2019. "Economic Impacts Of Migration And Brain Drain After Major Catastrophe: The Case Of Hurricane Katrina," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ecsysr:v:29:y:2017:i:3:p:452-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CESR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.