IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v17y2010i17p1691-1695.html
   My bibliography  Save this article

Impact of disaggregated ICT capital on electricity intensity in European manufacturing

Author

Listed:
  • Ronald Bernstein
  • Reinhard Madlener

Abstract

In this article we empirically analyse the impact of disaggregated ICT capital on the electricity intensity in five major European manufacturing industries (chemical, food, metal, pulp and paper, textile). The analysis of each industrial sector is based on an unbalanced panel including data for eight EU member countries (Denmark, Finland, Germany, Italy, Portugal, Slovenia, Sweden and the UK) for the period 1991 to 2005. The panel-econometric approach, in which we account for country-specific fixed effects, is based on a factor demand model similar to the one derived in Collard et al. (2005) for the French service sector. On the one hand, our analysis provides some evidence for an electricity-saving effect on production, induced by communication technologies in all sectors considered. On the other hand, the effect of computers and software on the electricity intensity of industrial production is not that clear-cut, but it does seem to be strongly dependent on the sector-specific production processes involved. Overall, the net effect of ICT diffusion on electricity intensity of production appears to be in favour of an enhancement of electricity efficiency in production.

Suggested Citation

  • Ronald Bernstein & Reinhard Madlener, 2010. "Impact of disaggregated ICT capital on electricity intensity in European manufacturing," Applied Economics Letters, Taylor & Francis Journals, vol. 17(17), pages 1691-1695.
  • Handle: RePEc:taf:apeclt:v:17:y:2010:i:17:p:1691-1695
    DOI: 10.1080/13504850903120717
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/13504850903120717&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504850903120717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yaya & Zhang, Yun, 2023. "What is the role of green ICT innovation in lowering carbon emissions in China? A provincial-level analysis," Energy Economics, Elsevier, vol. 127(PA).
    2. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    3. Xiaoying Zhong & Ruhe Xie & Peng Chen & Kaili Ke, 2021. "Internet Development and Environmental Quality—Evidence from the Development of Chinese Cities," Sustainability, MDPI, vol. 13(20), pages 1-21, October.
    4. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    5. Briglauer, Wolfgang & Köppl-Turyna, Monika, 2021. "Die Auswirkung der Digitalisierung auf CO2-Emissionen: Theoretische Einzeleffekte und empirische Abschätzung des Gesamteffekts," Policy Notes 46, EcoAustria – Institute for Economic Research.
    6. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    7. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
    8. Grazia Cecere & Sascha Rexhäuser & Patrick Schulte, 2019. "From less promising to green? Technological opportunities and their role in (green) ICT innovation," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(1), pages 45-63, January.
    9. Botang Han & Dong Wang & Weina Ding & Lei Han, 2016. "Effect of information and communication technology on energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 297-315, November.
    10. To Trung Thanh & Le Thanh Ha & Hoang Phuong Dung & Tran Thi Lan Huong, 2023. "Impacts of digitalization on energy security: evidence from European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11599-11644, October.
    11. Ma, Ruiyang & Lin, Boqiang, 2023. "Digitalization and energy-saving and emission reduction in Chinese cities: Synergy between industrialization and digitalization," Applied Energy, Elsevier, vol. 345(C).
    12. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    13. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    14. Wang, Qingxi & Hu, An & Tian, Zhihua, 2022. "Digital transformation and electricity consumption: Evidence from the Broadband China pilot policy," Energy Economics, Elsevier, vol. 115(C).
    15. Wang, Jiangquan & Nghiem, Xuan-Hoa & Jabeen, Fauzia & Luqman, Adeel & Song, Malin, 2023. "Integrated development of digital and energy industries: Paving the way for carbon emission reduction," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    16. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    17. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    18. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    19. Hao, Yu & Li, Ying & Guo, Yunxia & Chai, Jingxia & Yang, Chuxiao & Wu, Haitao, 2022. "Digitalization and electricity consumption: Does internet development contribute to the reduction in electricity intensity in China?," Energy Policy, Elsevier, vol. 164(C).
    20. Taneja, Shivani & Mandys, Filip, 2022. "The effect of disaggregated information and communication technologies on industrial energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    21. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:17:y:2010:i:17:p:1691-1695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.