IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i6d10.1007_s11269-022-03353-4.html
   My bibliography  Save this article

Adapting Irrigation Strategies to Mitigate Climate Change Impacts: A Value Engineering Approach

Author

Listed:
  • Walaa El-Nashar

    (Zagazig University)

  • Ahmed Elyamany

    (Zagazig University)

Abstract

Water scarcity and climate change are posing new challenges to irrigation management. Climate change increases water demand and decreases crop yields. The aim of this paper is to propose a framework to select the most efficient irrigation strategy to mitigate the impacts of climate change and achieve food security. Value engineering (VE) methodology is utilized to assure the functionality of the strategy and add an element of creativity while creating the value alternatives. The life cycle cost (LCC) technique is utilized to provide the optimum irrigation strategy from an economic perspective. The findings showed three different value alternatives for different crops, soil types, and irrigation systems. This paper contributes to the current state of knowledge by a) utilizing the Value Engineering methodology in irrigation management studies; b) evaluating irrigation strategies to ensure efficient irrigation water management; and c) providing policymakers with a tool to incorporate the added value and functionality into their policies regarding irrigation water.

Suggested Citation

  • Walaa El-Nashar & Ahmed Elyamany, 2023. "Adapting Irrigation Strategies to Mitigate Climate Change Impacts: A Value Engineering Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2369-2386, May.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03353-4
    DOI: 10.1007/s11269-022-03353-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03353-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03353-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Ximing & McKinney, Daene C. & Rosegrant, Mark W., 2003. "Sustainability analysis for irrigation water management in the Aral Sea region," Agricultural Systems, Elsevier, vol. 76(3), pages 1043-1066, June.
    2. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    3. Li, Jiamin & Inanaga, Shinobu & Li, Zhaohu & Eneji, A. Egrinya, 2005. "Optimizing irrigation scheduling for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 76(1), pages 8-23, July.
    4. Ahmad Radmehr & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2022. "Developing Strategies for Agricultural Water Management of Large Irrigation and Drainage Networks with Fuzzy MCDM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4885-4912, October.
    5. Li, Feng-Min & Song, Qiu-Hua & Liu, Hong-Sheng & Li, Feng-Rui & Liu, Xiao-Lan, 2001. "Effects of pre-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 49(3), pages 173-183, August.
    6. Belay, S. A. & Schmitter, Petra & Worqlul, A. W. & Steenhuis, T. S. & Reyes, M. R. & Tilahun, S. A., 2019. "Conservation agriculture saves irrigation water in the dry monsoon phase in the Ethiopian highlands," Papers published in Journals (Open Access), International Water Management Institute, pages 11(10):1-16.
    7. Liu, Haijun & Yu, Lipeng & Luo, Yu & Wang, Xiangping & Huang, Guanhua, 2011. "Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 483-492, February.
    8. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    9. Ahmed Elyamany & Walaa El-Nashar, 2016. "Estimating Life Cycle Cost of Improved Field Irrigation Canal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 99-113, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    2. Feng, Suwei & Ding, Weihua & Shi, Chenchen & Zhu, Xiaoling & Hu, Tiezhu & Ru, Zhengang, 2023. "Optimizing the spatial distribution of roots by supplemental irrigation to improve grain yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    4. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    5. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    6. Chenglong Zhang & Qiong Yue & Ping Guo, 2019. "A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    7. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    8. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    9. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    10. Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying & Zhang, Xiying, 2013. "Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat," Agricultural Water Management, Elsevier, vol. 129(C), pages 173-180.
    11. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    12. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    13. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Sui, Juan, 2017. "Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 179(C), pages 277-287.
    14. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    15. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    16. Sholpan Saimova & Gulsim Makenova & Aizhan Skakova & Aitolkyn Moldagaliyeva & Ardak Beisembinova & Zhamilya Berdiyarova & Bagdagul Imanbekova, 2020. "Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 638-646.
    17. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    18. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    19. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 105-112.
    20. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:6:d:10.1007_s11269-022-03353-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.