IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i3d10.1007_s11269-022-03420-w.html
   My bibliography  Save this article

Failure Conditions Assessment of Complex Water Systems Using Fuzzy Logic

Author

Listed:
  • Miloš Milašinović

    (University of Belgrade)

  • Damjan Ivetić

    (University of Belgrade)

  • Milan Stojković

    (The Institute for Artificial Intelligence Research and Development of Serbia)

  • Dragan Savić

    (University of Belgrade
    KWR Water Research Institute
    University of Exeter)

Abstract

Climate change, energy transition, population growth and other natural and anthropogenic impacts, combined with outdated (unfashionable) infrastructure, can force Dam and Reservoir Systems (DRS) operation outside of the design envelope (adverse operating conditions). Since there is no easy way to redesign or upgrade the existing DRSs to mitigate against all the potential failure situations, Digital Twins (DT) of DRSs are required to assess system’s performance under various what-if scenarios. The current state of practice in failure modelling is that failures (system’s not performing at the expected level or not at all) are randomly created and implemented in simulation models. That approach helps in identifying the riskiest parts (subsystems) of the DRS (risk-based approach), but does not consider hazards leading to failures, their occurrence probabilities or subsystem failure exposure. To overcome these drawbacks, this paper presents a more realistic failure scenario generator based on a causal approach. Here, the novel failure simulation approach utilizes fuzzy logic reasoning to create DRS failures based on hazard severity and subsystems’ reliability. Combined with the system dynamics (SD) model this general failure simulation tool is designed to be used with any DRS. The potential of the proposed method is demonstrated using the Pirot DRS case study in Serbia over a 10-year simulation period. Results show that even occasional hazards (as for more than 97% of the simulation there were no hazards), combined with outdated infrastructure can reduce DRS performance by 50%, which can help in identifying possible “hidden” failure risks and support system maintenance prioritization. Graphical Abstract

Suggested Citation

  • Miloš Milašinović & Damjan Ivetić & Milan Stojković & Dragan Savić, 2023. "Failure Conditions Assessment of Complex Water Systems Using Fuzzy Logic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1153-1182, February.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-022-03420-w
    DOI: 10.1007/s11269-022-03420-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03420-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03420-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Cleary & Mahesh Prakash & Stuart Mead & Vincent Lemiale & Geoff Robinson & Fanghong Ye & Sida Ouyang & Xinming Tang, 2015. "A scenario-based risk framework for determining consequences of different failure modes of earth dams," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1489-1530, January.
    2. Zayed, Mohamed E. & Zhao, Jun & Li, Wenjia & Elsheikh, Ammar H. & Elaziz, Mohamed Abd, 2021. "A hybrid adaptive neuro-fuzzy inference system integrated with equilibrium optimizer algorithm for predicting the energetic performance of solar dish collector," Energy, Elsevier, vol. 235(C).
    3. Liansheng SangJun & Jun Wang & Jueyi Sui & Mauricio Dziedzic, 2022. "Correction to: A New Approach for Dam Safety Assessment Using the Extended Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5799-5799, December.
    4. Xiao Fu & Chong-Shi Gu & Huai-Zhi Su & Xiang-Nan Qin, 2018. "Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method," IJERPH, MDPI, vol. 15(5), pages 1-22, April.
    5. Marzieh Momeni & Kourosh Behzadian & Hossein Yousefi & Sina Zahedi, 2021. "A Scenario-Based Management of Water Resources and Supply Systems Using a Combined System Dynamics and Compromise Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4233-4250, September.
    6. Yantao Zhu & Xinqiang Niu & Chongshi Gu & Bo Dai & Lixian Huang & Narayanan Kumarappan, 2021. "A Fuzzy Clustering Logic Life Loss Risk Evaluation Model for Dam-Break Floods," Complexity, Hindawi, vol. 2021, pages 1-14, February.
    7. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    8. Marzieh Samadi-Foroushani & Mohammad Javad Keyhanpour & Seyed Habib Musavi-Jahromi & Hossein Ebrahimi, 2022. "Integrated Water Resources Management Based on Water Governance and Water-food-energy Nexus through System Dynamics and Social Network Analyzing Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6093-6113, December.
    9. Taesu Jeon & Insu Paek, 2021. "Design and Verification of the LQR Controller Based on Fuzzy Logic for Large Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-17, January.
    10. Khalil Ardeshirtanha & Ahmad Sharafati, 2020. "Assessment of Water Supply Dam Failure Risk: Development of New Stochastic Failure Modes and Effects Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1827-1841, March.
    11. Yantao Zhu & Xinqiang Niu & Chongshi Gu & Bo Dai & Lixian Huang, 2021. "Corrigendum to “A Fuzzy Clustering Logic Life Loss Risk Evaluation Model for Dam-Break Floodsâ€," Complexity, Hindawi, vol. 2021, pages 1-1, December.
    12. Liansheng Sang & Jun Wang & Jueyi Sui & Mauricio Dziedzic, 2022. "A New Approach for Dam Safety Assessment Using the Extended Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5785-5798, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravi Gorripati & Mainak Thakur & Nagesh Kolagani, 2023. "Promoting Climate Resilient Sustainable Agriculture Through Participatory System Dynamics with Crop-Water-Income Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3935-3951, August.
    2. Wenbing Zhang & Hanhan Li & Danda Shi & Zhenzhong Shen & Shan Zhao & Chunhui Guo, 2023. "Determination of Safety Monitoring Indices for Roller-Compacted Concrete Dams Considering Seepage–Stress Coupling Effects," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
    3. Hexiang Zhang & Wei Ge & Yadong Zhang & Zongkun Li & Wei Li & Junyu Zhu & Wenqi Wang, 2023. "Risk Management Decision of Reservoir Dams Based on the Improved Life Quality Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1223-1239, February.
    4. Wang, Te & Li, Zongkun & Ge, Wei & Zhang, Hua & Zhang, Yadong & Sun, Heqiang & Jiao, Yutie, 2023. "Risk consequence assessment of dam breach in cascade reservoirs considering risk transmission and superposition," Energy, Elsevier, vol. 265(C).
    5. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    6. Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
    7. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    8. Marco Franchini & Ernesto Ventaglio & Alessandra Bonoli, 2011. "A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3613-3634, November.
    9. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    10. Shifeng Fang & Lida Xu & Yunqiang Zhu & Yongqiang Liu & Zhihui Liu & Huan Pei & Jianwu Yan & Huifang Zhang, 2015. "An integrated information system for snowmelt flood early-warning based on internet of things," Information Systems Frontiers, Springer, vol. 17(2), pages 321-335, April.
    11. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    12. Patricia Chica-Morales & Victor F. Muñoz & Antonio J. Domenech, 2021. "System Dynamics as Ex Ante Impact Assessment Tool in International Development Cooperation: Study Case of Urban Sustainability Policies in Darkhan, Mongolia," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    13. Xian’En Wang & Wei Zhan & Shuo Wang, 2020. "Uncertain Water Environment Carrying Capacity Simulation Based on the Monte Carlo Method–System Dynamics Model: A Case Study of Fushun City," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    14. Congcong Zhou & Zhenzhong Shen & Liqun Xu & Yiqing Sun & Wenbing Zhang & Hongwei Zhang & Jiayi Peng, 2023. "Global Sensitivity Analysis Method for Embankment Dam Slope Stability Considering Seepage–Stress Coupling under Changing Reservoir Water Levels," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    15. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    16. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    17. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    18. Taesu Jeon & Dongmyoung Kim & Insu Paek, 2022. "Improvements to and Experimental Validation of PI Controllers Using a Reference Bias Control Algorithm for Wind Turbines," Energies, MDPI, vol. 15(21), pages 1-18, November.
    19. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    20. Gema Carmona & Consuelo Varela-Ortega & John Bromley, 2011. "The Use of Participatory Object-Oriented Bayesian Networks and Agro-Economic Models for Groundwater Management in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1509-1524, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-022-03420-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.