IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i11d10.1007_s11269-023-03572-3.html
   My bibliography  Save this article

Modelling Stormwater Runoff Changes Induced by Ground-Mounted Photovoltaic Solar Parks: A Conceptualization in EPA-SWMM

Author

Listed:
  • Aurora Gullotta

    (University of Catania)

  • Tagele Mossie Aschale

    (University of Catania
    Debre Markos University)

  • David J. Peres

    (University of Catania)

  • Guido Sciuto

    (Ambiens Srl)

  • Antonino Cancelliere

    (University of Catania)

Abstract

A modelling framework for the simulation of stormwater runoff in ground-mounted photovoltaic solar parks is proposed. Elements in the solar park and their mutual interactions during precipitation events are conceptualized in EPA-SWMM. We demonstrate the potential of the framework by exploring how different factors influence runoff formation. Specifically, we carry out simulations for different sizes of the installation, soil types and input hyetographs. We also show the effect of ground cover, by changing the surface roughness. Outflow discharge from the park is compared to that from a reference catchment to evaluate variations of peak flow and runoff volume. Results highlight no practical changes in runoff in the short term after installation. However, in the long term, modifications in soil cover may lead to some potential increase of runoff. For instance, increments of the peak flow from the solar park up to 21% and 35% are obtained for roughness coefficient reductions of 10% and 20%, respectively. The proposed modelling approach can be beneficial for studying hydrological impacts of solar parks and thus for planning measures for their mitigation.

Suggested Citation

  • Aurora Gullotta & Tagele Mossie Aschale & David J. Peres & Guido Sciuto & Antonino Cancelliere, 2023. "Modelling Stormwater Runoff Changes Induced by Ground-Mounted Photovoltaic Solar Parks: A Conceptualization in EPA-SWMM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4507-4520, September.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:11:d:10.1007_s11269-023-03572-3
    DOI: 10.1007/s11269-023-03572-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03572-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03572-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel P. Loucks, 2023. "Meeting Climate Change Challenges: Searching for More Adaptive and Innovative Decisions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2235-2245, May.
    2. Majid Hashemi & Najmeh Mahjouri, 2022. "Global Sensitivity Analysis-based Design of Low Impact Development Practices for Urban Runoff Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2953-2972, July.
    3. Palmer, Diane & Gottschalg, Ralph & Betts, Tom, 2019. "The future scope of large-scale solar in the UK: Site suitability and target analysis," Renewable Energy, Elsevier, vol. 133(C), pages 1136-1146.
    4. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    2. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    3. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    4. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    5. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    6. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    7. Li, Jianhui & Zhang, Wei & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhao, Oufan & Zhong, Jianmei & Zeng, Xiding, 2022. "A hybrid photovoltaic and water/air based thermal(PVT) solar energy collector with integrated PCM for building application," Renewable Energy, Elsevier, vol. 199(C), pages 662-671.
    8. Zambrano-Asanza, S. & Quiros-Tortos, J. & Franco, John F., 2021. "Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Xiaoteng Cao & Chaofu Wei & Deti Xie, 2021. "Evaluation of Scale Management Suitability Based on the Entropy-TOPSIS Method," Land, MDPI, vol. 10(4), pages 1-17, April.
    10. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Brandon Cortés-Caicedo & Farhad Zishan & Javier Rosero-García, 2023. "Optimal Power Dispatch of PV Generators in AC Distribution Networks by Considering Solar, Environmental, and Power Demand Conditions from Colombia," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    11. Li, Xueling & Li, Renfu & Hu, Lin & Zhu, Shengjie & Zhang, Yuanyuan & Cui, Xinguang & Li, Yichao, 2023. "Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base," Energy, Elsevier, vol. 263(PE).
    12. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
    13. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    14. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2022. "Reliability modeling and configuration optimization of a photovoltaic based electric power generation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Rashad, Magdi & Żabnieńska-Góra, Alina & Norman, Les & Jouhara, Hussam, 2022. "Analysis of energy demand in a residential building using TRNSYS," Energy, Elsevier, vol. 254(PB).
    16. Fu, Zaiguo & Li, Yongwei & Liang, Xiaotian & Lou, Shang & Qiu, Zhongzhu & Cheng, Zhiyuan & Zhu, Qunzhi, 2021. "Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs," Energy, Elsevier, vol. 228(C).
    17. Ziapour, Behrooz M. & Alirezaei, Hadi & Ghorannevis, Sepideh, 2023. "Energy recovery from the enclosures between the glassing covers in a compact photovoltaic thermal collector," Renewable Energy, Elsevier, vol. 216(C).
    18. Biggins, F.A.V. & Travers, D. & Ejeh, J.O. & Lee, R. & Buckley, A. & Brown, S., 2023. "The economic impact of location on a solar farm co-located with energy storage," Energy, Elsevier, vol. 278(C).
    19. Khanna, Sakshum & Paneliya, Sagar & Prajapati, Parth & Mukhopadhyay, Indrajit & Jouhara, Hussam, 2022. "Ultra-stable silica/exfoliated graphite encapsulated n-hexacosane phase change nanocomposite: A promising material for thermal energy storage applications," Energy, Elsevier, vol. 250(C).
    20. Amirhossein Nazari & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2023. "Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3769-3793, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:11:d:10.1007_s11269-023-03572-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.