IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i11d10.1007_s11269-022-03260-8.html
   My bibliography  Save this article

Assessing and Predicting the Vulnerability to Agrometeorological Drought Using the Fuzzy-AHP and Second-order Markov Chain techniques

Author

Listed:
  • Abdol Rassoul Zarei

    (Fasa University)

  • Mohammad Reza Mahmoudi

    (Fasa University)

Abstract

Vulnerabilities of different regions to drought are under the influence of different factors such as the land use, accessibility to the surface and subsurface water resources, etc. In this research, using the information of 18 effective indicators on the region’s vulnerability to agrometeorological drought, the vulnerability of Fars province to agrometeorological drought was assessed and predicted. For this purpose, first, a drought vulnerability map for each of the indicators for 2000, 2005, 2010, 2015, and 2020 years was prepared (all indicators were classified into mild (Mi), moderate (Mo), severe (Se), and very severe (VSe) classes). Then the weight of each indicator was determined using the Fuzzy-AHP method. In the next step, by superposition the criteria’s maps based on their weight, the final vulnerability maps to drought were prepared for the years mentioned above. Finally, using the second-order Markov chain method, the vulnerability class to agrometeorological drought was predicted for each pixel (34,200 pixels) over the Fars province for 2025 and 2030. The results indicated that the ratio of rain-fed cultivated area to total agricultural lands (0.215) and slop (0.009) had the highest and lowest weights. The study area in all years was classified into Mo (east and northern regions) and Se (west and southern regions) vulnerability classes. Based on the Spearman test, from 2000 to 2020, the area percent of the Mo and Se classes of vulnerability had a decreasing and increasing trend, respectively. The validation test of the second-order Markov chain showed that this model has 92% accuracy for predicting the vulnerability classes. Also, in 2025 and 2030, the area percentage of the Mo class will be equal to 57.17% and 57.30% of the study area, and the area percentage of the Se class will be equal to 42.83% and 42.70%.

Suggested Citation

  • Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2022. "Assessing and Predicting the Vulnerability to Agrometeorological Drought Using the Fuzzy-AHP and Second-order Markov Chain techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4403-4424, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03260-8
    DOI: 10.1007/s11269-022-03260-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03260-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03260-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Elham Koohi, 2021. "Sensitivity Assessment to the Occurrence of Different Types of Droughts Using GIS and AHP Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3593-3615, September.
    2. Demetrios E. Tsesmelis & Christos A. Karavitis & Panagiotis D. Oikonomou & Stavros Alexandris & Constantinos Kosmas, 2018. "Assessment of the Vulnerability to Drought and Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas Index (ESAI)," Resources, MDPI, vol. 8(1), pages 1-19, December.
    3. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    4. Gauranshi Raj Singh & Manoj Kumar Jain & Vivek Gupta, 2019. "Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 611-635, November.
    5. Wei Pei & Qiang Fu & Dong Liu & Tian-xiao Li & Kun Cheng, 2016. "Assessing agricultural drought vulnerability in the Sanjiang Plain based on an improved projection pursuit model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 683-701, May.
    6. Ghazal Shahpari & Hossein Sadeghi & Malihe Ashena & David García-León, 2022. "Drought effects on the Iranian economy: a computable general equilibrium approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4110-4127, March.
    7. Ionuţ Minea & Marina Iosub & Daniel Boicu, 2022. "Multi-scale approach for different type of drought in temperate climatic conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1153-1177, January.
    8. Omidreza Mikaili & Majid Rahimzadegan, 2022. "Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2511-2529, April.
    9. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    10. Wei Pei & Qiang Fu & Dong Liu & Tianxiao Li & Kun Cheng & Song Cui, 2019. "A Novel Method for Agricultural Drought Risk Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2033-2047, April.
    11. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bright Chisadza & Onalenna Gwate & France Ncube & Nkululeko Mpofu, 2023. "Assessment and characterisation of hydrometeorological droughts in the Upper Mzingwane sub-catchment of Zimbabwe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3275-3299, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    2. Nadjib Haied & Atif Foufou & Samira Khadri & Adel Boussaid & Mohamed Azlaoui & Nabil Bougherira, 2023. "Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    3. Zhuguang Lan & Ming Huang, 2018. "Safety assessment for seawall based on constrained maximum entropy projection pursuit model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1165-1178, April.
    4. Abdol Rassoul Zarei & Marzieh Mokarram & Mohammad Reza Mahmoudi, 2023. "Comparison of the capability of the Meteorological and Remote Sensing Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 769-796, January.
    5. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    6. Tan Huizhi & Lu Xiaoning & Yang Shiqi & Wang Yongqian & Li Feng & Liu Jinbao & Chen Jun & Huang Yue, 2022. "Drought risk assessment in the coupled spatial–temporal dimension of the Sichuan Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3205-3233, December.
    7. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    8. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    9. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    10. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    11. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    12. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    13. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    14. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    15. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    16. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    17. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    18. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    20. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03260-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.