IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i7d10.1007_s11269-017-1625-6.html
   My bibliography  Save this article

Optimization of Chain-Reservoirs’ Operation with a New Approach in Artificial Intelligence

Author

Listed:
  • Mohammad Ehteram

    (Semnan University)

  • Mohammed Falah Allawi

    (Universiti Kebangsaan Malaysia)

  • Hojat Karami

    (Semnan University)

  • Sayed-Farhad Mousavi

    (Semnan University)

  • Mohammad Emami

    (Semnan University)

  • Ahmed EL-Shafie

    (University of Malaya)

  • Saeed Farzin

    (Semnan University)

Abstract

Operation of reservoirs and power plants for better management of water resources and production of hydro-electric energy has been the objective of many studies. In this research, shark algorithm is used for management of water resources and hydro-electric plants. After the introduction of this procedure, the algorithm is applied to some complex cases such as Karun-4 reservoir, 4-reservoir system, 10-reservoir system and another one including 26 power plants. In the Karun-4 case, the aim was to reduce water shortages and the results obtained from shark algorithm were in 100% compliance with the absolute optimum answer obtained from Lingo software and non-linear method. This was the best solution to the problem to date in the published researches. In the 4-reservoir system, the objective was to increase the profit from the reservoirs. The shark algorithm yielded a value of 1194.64, which is the best answer to date to the question. In regard to the energy production by the 26 power plants, the shark algorithm yielded 40% more energy, compared to genetic algorithm.

Suggested Citation

  • Mohammad Ehteram & Mohammed Falah Allawi & Hojat Karami & Sayed-Farhad Mousavi & Mohammad Emami & Ahmed EL-Shafie & Saeed Farzin, 2017. "Optimization of Chain-Reservoirs’ Operation with a New Approach in Artificial Intelligence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2085-2104, May.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1625-6
    DOI: 10.1007/s11269-017-1625-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1625-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1625-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elahe Fallah-Mehdipour & Omid Bozorg Haddad & Soheila Beygi & Miguel Mariño, 2011. "Effect of Utility Function Curvature of Young’s Bargaining Method on the Design of WDNs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2197-2218, July.
    2. M. Jalali & A. Afshar & M. Mariño, 2007. "Multi-Colony Ant Algorithm for Continuous Multi-Reservoir Operation Optimization Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1429-1447, September.
    3. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Xu, Chong-Yu, 2018. "Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation," Applied Energy, Elsevier, vol. 228(C), pages 1726-1739.
    3. Mohammed Falah Allawi & Othman Jaafar & Mohammad Ehteram & Firdaus Mohamad Hamzah & Ahmed El-Shafie, 2018. "Synchronizing Artificial Intelligence Models for Operating the Dam and Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3373-3389, August.
    4. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Bernhard & Marc Deschamps, 2017. "Kalman on dynamics and contro, Linear System Theory, Optimal Control, and Filter," Working Papers 2017-10, CRESE.
    2. Jones, Randall E. & Cacho, Oscar J., 2000. "A Dynamic Optimisation Model of Weed Control," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123685, Australian Agricultural and Resource Economics Society.
    3. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    4. Pam Norton & Ravi Phatarfod, 2008. "Optimal Strategies In One-Day Cricket," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(04), pages 495-511.
    5. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    6. Tan, Madeleine Sui-Lay, 2016. "Policy coordination among the ASEAN-5: A global VAR analysis," Journal of Asian Economics, Elsevier, vol. 44(C), pages 20-40.
    7. D. W. K. Yeung, 2008. "Dynamically Consistent Solution For A Pollution Management Game In Collaborative Abatement With Uncertain Future Payoffs," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 517-538.
    8. Crutchfield, Stephen R. & Brazee, Richard J., 1990. "An Integrated Model of Surface and Ground Water Quality," 1990 Annual meeting, August 5-8, Vancouver, Canada 271011, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    10. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    11. Eric D. Gould, 2008. "Marriage and Career: The Dynamic Decisions of Young Men," Journal of Human Capital, University of Chicago Press, vol. 2(4), pages 337-378.
    12. S. Seifollahi-Aghmiuni & Omid Bozorg Haddad & M. Omid & M. Mariño, 2013. "Effects of Pipe Roughness Uncertainty on Water Distribution Network Performance During its Operational Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1581-1599, March.
    13. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    14. Dmitri Blueschke & Ivan Savin, 2015. "No such thing like perfect hammer: comparing different objective function specifications for optimal control," Jena Economics Research Papers 2015-005, Friedrich-Schiller-University Jena.
    15. Sieniutycz, Stanislaw, 2015. "Synthesizing modeling of power generation and power limits in energy systems," Energy, Elsevier, vol. 84(C), pages 255-266.
    16. Miller, Marcus & Papi, Laura, 1997. "The 'laissez faire' bias of managed floating," Journal of International Money and Finance, Elsevier, vol. 16(6), pages 989-1000, December.
    17. Changming Ji & Chuangang Li & Boquan Wang & Minghao Liu & Liping Wang, 2017. "Multi-Stage Dynamic Programming Method for Short-Term Cascade Reservoirs Optimal Operation with Flow Attenuation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4571-4586, November.
    18. Ghassan, Hassan B. & Al-Jefri, Essam H., 2015. "الحساب الجاري في المدى البعيد عبر نموذج داخلي الزمن [The Current Account in the Long Run through the Intertemporal Model]," MPRA Paper 66527, University Library of Munich, Germany.
    19. David W. K. Yeung & Leon A. Petrosyan, 2014. "Subgame Consistent Cooperative Solutions For Randomly Furcating Stochastic Dynamic Games With Uncertain Horizon," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 1-29.
    20. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1625-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.