IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i10d10.1007_s11269-016-1360-4.html
   My bibliography  Save this article

Assessing the Hydrological Response of Ayamama Watershed from Urbanization Predicted under Various Landuse Policy Scenarios

Author

Listed:
  • Tewodros Assefa Nigussie

    (Istanbul Technical University)

  • Abdusselam Altunkaynak

    (Istanbul Technical University)

Abstract

This study investigated the effects of urbanization predicted using the SLEUTH urban growth model (an acronym taken from Slope, Landuse, Exclusion, Urban extent, Transportation and Hillshade) under four landuse policy scenarios on the hydrological response of Ayamama watershed using the Hydrologic Engineering Center Release 1 (HEC-1) hydrological model. The SLEUTH model was calibrated based on the Brute Force Monte Carlo iteration technique using the urban extents of Istanbul in 1987, 2000, 2009 and 2013 and was verified by considering Kappa coefficient as evaluation criteria. HEC-1 was calibrated and verified using observed rainfall-runoff event and based on the coefficient of determination (R2), Nash-Sutcliffe coefficient of efficiency (CE) and percentage of bias (PBIAS) as performance indicators. The urbanization prediction results showed that the urban extent of Ayamama watershed would reach 50.3 km2, 44 km2, 63 km2 and 60 km2 under Scenarios 1, 2, 3 and 4, respectively, in 2050. The hydrological simulation results under these urban extents showed that the urban extent of Ayamama watershed under Scenario-3, a scenario that allows unrestricted growth with the implementation of Project Canal Istanbul (PCI), resulted in the highest peak discharge and the shortest time to peak. Such an increase in the peak discharge and reduction in the time to peak will increase the risk of flooding and, therefore, extreme care needs to be taken before and during the implementation of PCI.

Suggested Citation

  • Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2016. "Assessing the Hydrological Response of Ayamama Watershed from Urbanization Predicted under Various Landuse Policy Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3427-3441, August.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:10:d:10.1007_s11269-016-1360-4
    DOI: 10.1007/s11269-016-1360-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1360-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1360-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu-ming Wang & Yu-ji Li & Shin-jen Cheng & Fu-ti Yang & Yin-ta Chen, 2015. "Effects of Spatial-Temporal Imperviousness on Hydrological Responses of Various Areas in an Urbanized Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3551-3567, August.
    2. Ge Zhang & Subhrajit Guhathakurta & Susannah Lee & Amy Moore & Lijiao Yan, 2014. "Grid-Based Land-Use Composition and Configuration Optimization for Watershed Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2867-2883, August.
    3. Fares Laouacheria & Rachid Mansouri, 2015. "Comparison of WBNM and HEC-HMS for Runoff Hydrograph Prediction in a Small Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2485-2501, June.
    4. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    5. Anil Misra, 2011. "Impact of Urbanization on the Hydrology of Ganga Basin (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 705-719, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajaykumar Kadam & Animesh S. Karnewar & Bhavana Umrikar & R. N. Sankhua, 2019. "Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1809-1833, August.
    2. Juliana Mendes & Rodrigo Maia, 2016. "Hydrologic Modelling Calibration for Operational Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5671-5685, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    2. Liping Zhang & Shiwen Zhang & Yajie Huang & Meng Cao & Yuanfang Huang & Hongyan Zhang, 2016. "Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model," IJERPH, MDPI, vol. 13(4), pages 1-20, March.
    3. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    4. N. Colombani & A. Osti & G. Volta & M. Mastrocicco, 2016. "Impact of Climate Change on Salinization of Coastal Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2483-2496, May.
    5. Hao-Che Ho & Hong-Yuan Lee & Yao-Jung Tsai & Yuan-Shun Chang, 2022. "Numerical Experiments on Low Impact Development for Urban Resilience Index," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    6. Sagarika Patowary & Banasri Sarma & Arup Kumar Sarma, 2019. "A Revision of OPTEMP-LS Model for Selecting Optimal EMP Combination for Minimizing Sediment and Water Yield from Hilly Urban Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1249-1264, March.
    7. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    8. Shouhong Zhang & Yiping Guo, 2014. "Stormwater Capture Efficiency of Bioretention Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 149-168, January.
    9. O. Barron & M. Donn & A. Barr, 2013. "Urbanisation and Shallow Groundwater: Predicting Changes in Catchment Hydrological Responses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 95-115, January.
    10. Arnob Bormudoi & Masahiko Nagai, 2016. "A remote-sensing-based vegetative technique for flood hazard mitigation of Jiadhal basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 411-423, August.
    11. Sagarika Patowary & Arup Kumar Sarma, 2018. "GIS-Based Estimation of Soil Loss from Hilly Urban Area Incorporating Hill Cut Factor into RUSLE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3535-3547, August.
    12. Sanat Nalini Sahoo & P. Sreeja, 2016. "Relationship between peak rainfall intensity (PRI) and maximum flood depth (MFD) in an urban catchment of Northeast India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1527-1544, September.
    13. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
    14. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2019. "Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1031-1047, November.
    15. Sagarika Patowary & Arup Kumar Sarma, 2020. "Projection of urban settlement in eco-sensitive hilly areas and its impact on peak runoff," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5833-5848, August.
    16. Gaurav Talukdar & Janaki Ballav Swain & Kanhu Charan Patra, 2021. "Flood inundation mapping and hazard assessment of Baitarani River basin using hydrologic and hydraulic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 389-403, October.
    17. Yaoze Liu & Sisi Li & Carlington W. Wallace & Indrajeet Chaubey & Dennis C. Flanagan & Lawrence O. Theller & Bernard A. Engel, 2017. "Comparison of Computer Models for Estimating Hydrology and Water Quality in an Agricultural Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3641-3665, September.
    18. Muyesaier Tudi & Linsheng Yang & Li Wang & Jia Lv & Lijuan Gu & Hairong Li & Wei Peng & Qiming (Jimmy) Yu & Huada (Daniel) Ruan & Qin Li & Ross Sadler & Des Connell, 2023. "Environmental and Human Health Hazards from Chlorpyrifos, Pymetrozine and Avermectin Application in China under a Climate Change Scenario: A Comprehensive Review," Agriculture, MDPI, vol. 13(9), pages 1-27, August.
    19. Muhammad Adnan Shahid & Piero Boccardo & Muhammad Usman & Adriana Albanese & Muhammad Uzair Qamar, 2017. "Predicting Peak Flows in Real Time through Event Based Hydrologic Modeling for a Trans-Boundary River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 793-810, February.
    20. Anil Misra, 2013. "Climate change impact, mitigation and adaptation strategies for agricultural and water resources, in Ganga Plain (India)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(5), pages 673-689, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:10:d:10.1007_s11269-016-1360-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.