IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8696-d863808.html
   My bibliography  Save this article

Numerical Experiments on Low Impact Development for Urban Resilience Index

Author

Listed:
  • Hao-Che Ho

    (Department of Civil Engineering, National Taiwan University, Taipei City 106, Taiwan)

  • Hong-Yuan Lee

    (Department of Civil Engineering, National Taiwan University, Taipei City 106, Taiwan)

  • Yao-Jung Tsai

    (Department of Civil Engineering, National Taiwan University, Taipei City 106, Taiwan)

  • Yuan-Shun Chang

    (Department of Civil Engineering, National Taiwan University, Taipei City 106, Taiwan)

Abstract

Low impact development (LID) has become one of the strategies that effectively mitigate the impacts of climate change. In addition to the ability to reduce nonpoint source (NPS) pollution caused by flash floods from the surface runoff, LID has also been applied to control water quantity under extreme rainfall events. Due to the fact that studies about LID configuration optimization tended to control water quantity and gradually ignored the main functions of water quality treatment, this study aims to consider water quantity and quality to estimate the benefits and optimal configuration of LID by Non-Dominated Genetic Algorithm (NSGA-II). In addition, regarding to the outlet peak flow, hydrologic footprint residence (HFR) was considered to be the water quantity indicator due to the ability to represent the dynamics of flow changes, and the modified quality indicator (Mass Emission First Flush ratio, MEFF 30 ) was corrected to represent the pollutant transport process in a large catchment area. The results show that the flood and MEFF 30 reduction rate of LID are inversely proportional to rainfall duration and intensity. The benefit of pollutant reduction, which can still be maintained by 20% and 15% under a big return period and the long duration was about three times than the quantity control. Taking the cost into account, although the rain barrel had the best effect of reduction per unit area, green roofs and permeable pavements had a higher unit cost reduction rate due to the lower costs. The upper and middle reaches of the open channel and the confluence of rainwater sewers should be the optimal LID configuration to achieve the benefits of both flood and pollution reduction.

Suggested Citation

  • Hao-Che Ho & Hong-Yuan Lee & Yao-Jung Tsai & Yuan-Shun Chang, 2022. "Numerical Experiments on Low Impact Development for Urban Resilience Index," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8696-:d:863808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Li & Xu-Feng Yan & Huan-Feng Duan, 2019. "Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3271-3288, July.
    2. Rajesh Singh & Mohammed Baz & Anita Gehlot & Mamoon Rashid & Manpreet Khurana & Shaik Vaseem Akram & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2021. "Water Quality Monitoring and Management of Building Water Tank Using Industrial Internet of Things," Sustainability, MDPI, vol. 13(15), pages 1-26, July.
    3. Anil Misra, 2011. "Impact of Urbanization on the Hydrology of Ganga Basin (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 705-719, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiane Souza Rodrigues Pereira & Thiago Pires de Carvalho & Thiago Augusto Mendes & Klebber Teodomiro Martins Formiga, 2022. "Evaluation of Water Level in Flowing Channels Using Ultrasonic Sensors," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    2. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    3. Omid Seyedashraf & Andrea Bottacin-Busolin & Julien J. Harou, 2021. "Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2449-2464, June.
    4. Xinyu Dong & Peng Yuan & Yonghui Song & Wenxuan Yi, 2021. "Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    5. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    6. Asterios Stroumpoulis & Evangelia Kopanaki & George Karaganis, 2021. "Examining the Relationship between Information Systems, Sustainable SCM, and Competitive Advantage," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    7. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    8. Wei Lu & Xiaosheng Qin, 2019. "An Integrated Fuzzy Simulation-Optimization Model for Supporting Low Impact Development Design under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4351-4365, September.
    9. Shouhong Zhang & Yiping Guo, 2014. "Stormwater Capture Efficiency of Bioretention Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 149-168, January.
    10. O. Barron & M. Donn & A. Barr, 2013. "Urbanisation and Shallow Groundwater: Predicting Changes in Catchment Hydrological Responses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 95-115, January.
    11. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
    12. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2019. "Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1031-1047, November.
    13. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2016. "Assessing the Hydrological Response of Ayamama Watershed from Urbanization Predicted under Various Landuse Policy Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3427-3441, August.
    14. Husnain Tansar & Huan-Feng Duan & Ole Mark, 2022. "Catchment-Scale and Local-Scale Based Evaluation of LID Effectiveness on Urban Drainage System Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 507-526, January.
    15. Anil Misra, 2013. "Climate change impact, mitigation and adaptation strategies for agricultural and water resources, in Ganga Plain (India)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(5), pages 673-689, June.
    16. Urvashi Sharma & Adeeba Khan & Venkatesh Dutta, 2021. "Long-term sustainability of groundwater resources in the central Ganga Alluvial Plain, India: Study from Gomti River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16015-16037, November.
    17. Naseem Saba & Rashid Umar, 2021. "Identification of the processes controlling groundwater quality in shallow aquifers of Moradabad city, west Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12994-13015, September.
    18. Zikun Xing & Lloyd H. C. Chua & Haiyan Miao & Jörg Imberger & Peipei Yang, 2018. "Wind Shielding Impacts on Water Quality in an Urban Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3549-3561, September.
    19. Chang Liu & Emily S. Minor & Megan B. Garfinkel & Bo Mu & Guohang Tian, 2021. "Anthropogenic and Climatic Factors Differentially Affect Waterbody Area and Connectivity in an Urbanizing Landscape: A Case Study in Zhengzhou, China," Land, MDPI, vol. 10(10), pages 1-23, October.
    20. Daniela Ducci & Mariangela Sellerino, 2015. "Groundwater Mass Balance in Urbanized Areas Estimated by a Groundwater Flow Model Based on a 3D Hydrostratigraphical Model: the Case Study of the Eastern Plain of Naples (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4319-4333, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8696-:d:863808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.